Quantum simulation of 2D topological physics in a 1D array of optical cavities

被引:132
作者
Luo, Xi-Wang [1 ,2 ]
Zhou, Xingxiang [1 ,2 ]
Li, Chuan-Feng [1 ,2 ]
Xu, Jin-Shi [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Zhou, Zheng-Wei [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
中国国家自然科学基金;
关键词
ORBITAL ANGULAR-MOMENTUM; SPIRAL PHASE PLATES; EDGE STATES; ENTANGLEMENT; MEMORY;
D O I
10.1038/ncomms8704
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
引用
收藏
页数:8
相关论文
共 61 条
[51]   QUANTIZED HALL CONDUCTANCE IN A TWO-DIMENSIONAL PERIODIC POTENTIAL [J].
THOULESS, DJ ;
KOHMOTO, M ;
NIGHTINGALE, MP ;
DENNIJS, M .
PHYSICAL REVIEW LETTERS, 1982, 49 (06) :405-408
[52]   TWO-DIMENSIONAL MAGNETOTRANSPORT IN THE EXTREME QUANTUM LIMIT [J].
TSUI, DC ;
STORMER, HL ;
GOSSARD, AC .
PHYSICAL REVIEW LETTERS, 1982, 48 (22) :1559-1562
[53]   Artificial gauge field for photons in coupled cavity arrays [J].
Umucalilar, R. O. ;
Carusotto, I. .
PHYSICAL REVIEW A, 2011, 84 (04)
[54]   Uhlmann Phase as a Topological Measure for One-Dimensional Fermion Systems [J].
Viyuela, O. ;
Rivas, A. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2014, 112 (13)
[55]  
VONKLITZING K, 1980, PHYS REV LETT, V45, P494, DOI 10.1103/PhysRevLett.45.494
[56]  
Wang J, 2012, NAT PHOTONICS, V6, P488, DOI [10.1038/NPHOTON.2012.138, 10.1038/nphoton.2012.138]
[57]   Proposal for Direct Measurement of Topological Invariants in Optical Lattices [J].
Wang, Lei ;
Soluyanov, Alexey A. ;
Troyer, Matthias .
PHYSICAL REVIEW LETTERS, 2013, 110 (16)
[58]   Observation of unidirectional backscattering-immune topological electromagnetic states [J].
Wang, Zheng ;
Chong, Yidong ;
Joannopoulos, J. D. ;
Soljacic, Marin .
NATURE, 2009, 461 (7265) :772-U20
[59]   Orbital angular momentum: origins, behavior and applications [J].
Yao, Alison M. ;
Padgett, Miles J. .
ADVANCES IN OPTICS AND PHOTONICS, 2011, 3 (02) :161-204
[60]  
Yariv A., 2007, Photonics: Optical Electronics in Modern Communications