Optimal Control for Linear Quadratic Problems with Markov Jump Parameters and Fractional Brownian Perturbation

被引:0
|
作者
Guevara, Karen [1 ]
Fragoso, Marcelo D. [2 ]
机构
[1] Pontifical Catholic Univ Rio de Janeiro, Fac Elect Engn, Rio De Janeiro, Brazil
[2] Natl Lab Sci Comp LNCC, Petropolis, RJ, Brazil
来源
2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2017年
关键词
SYSTEMS; MOTIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The subject matter of this paper is the finite horizon optimal control problem for the class of Markov jump linear systems under fractional Brownian perturbation and quadratic cost. We consider the scenario in which H is an element of (1/2, 1), where H stands for the Hurst parameter, and the state space of the Markov process is finite. Under this setting, we obtain an explicit control policy for the control problem.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Linear Quadratic Optimal Control Problems for Conditional Mean-Field Stochastic Differential Equations Under Partial Information
    Feng, Siqi
    Wang, Guangchen
    Xiao, Hua
    Xing, Zhuangzhuang
    Zhang, Huanjun
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2025,
  • [42] Solving The Optimal Control Problems Using Homotopy Perturbation Transform Method
    Alipour, M.
    Soltanian, F.
    Vahidi, J.
    Ghasempour, S.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 : 25 - 38
  • [43] APPROXIMATION OF FRACTIONAL RESOLVENTS AND APPLICATIONS TO TIME OPTIMAL CONTROL PROBLEMS
    Zhu, Shouguo
    Li, Gang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (02): : 649 - 666
  • [44] FRACTIONAL ORDER OPTIMAL CONTROL PROBLEMS WITH FREE TERMINAL TIME
    Pooseh, Shakoor
    Almeida, Ricardo
    Torres, Delfim F. M.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2014, 10 (02) : 363 - 381
  • [45] An adaptive dynamic programming-based algorithm for infinite-horizon linear quadratic stochastic optimal control problems
    Zhang, Heng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2741 - 2760
  • [46] The Optimal Homotopy Analysis Method for solving linear optimal control problems
    Jia, Wenjuan
    He, Xiqin
    Guo, Liangdong
    APPLIED MATHEMATICAL MODELLING, 2017, 45 : 865 - 880
  • [47] The Boubaker polynomials and their application to solve fractional optimal control problems
    Rabiei, Kobra
    Ordokhani, Yadollah
    Babolian, Esmaeil
    NONLINEAR DYNAMICS, 2017, 88 (02) : 1013 - 1026
  • [48] Fractional power series neural network for solving delay fractional optimal control problems
    Kheyrinataj, Farzaneh
    Nazemi, Alireza
    CONNECTION SCIENCE, 2020, 32 (01) : 53 - 80
  • [49] Data-driven policy iteration algorithm for continuous-time stochastic linear-quadratic optimal control problems
    Zhang, Heng
    Li, Na
    ASIAN JOURNAL OF CONTROL, 2024, 26 (01) : 481 - 489
  • [50] Finite-horizon and infinite-horizon linear quadratic optimal control problems: A data-driven Euler scheme
    Wang, Guangchen
    Zhang, Heng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (13):