Identification of Novel Components of Target-of-Rapamycin Signaling Pathway by Network-Based Multi-Omics Integrative Analysis

被引:2
|
作者
Eke, Elif Dereli [1 ,2 ]
Arga, Kazim Yalcin [3 ]
Dikicioglu, Duygu [2 ,4 ]
Eraslan, Serpil [2 ,5 ]
Erkol, Emir [6 ]
Celik, Arzu [6 ]
Kirdar, Betul [2 ]
Di Camillo, Barbara [1 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Bogazici Univ, Dept Chem Engn, Istanbul, Turkey
[3] Marmara Univ, Dept Bioengn, Istanbul, Turkey
[4] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge, England
[5] Koc Univ Hosp, Diagnost Ctr Genet Dis, Istanbul, Turkey
[6] Bogazici Univ, Dept Mol Biol & Genet, Istanbul, Turkey
关键词
drug targets; target of rapamycin (TOR) signaling; biomarkers; multiomics; caffeine; network-based analysis; TOR FUNCTION; GROWTH; AUTOPHAGY; DATABASE; REVEALS; MTORC2; ENHANCEMENT; INFORMATION; METABOLISM; COMPLEXES;
D O I
10.1089/omi.2019.0021
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Target of rapamycin (TOR) is a major signaling pathway and regulator of cell growth. TOR serves as a hub of many signaling routes, and is implicated in the pathophysiology of numerous human diseases, including cancer, diabetes, and neurodegeneration. Therefore, elucidation of unknown components of TOR signaling that could serve as potential biomarkers and drug targets has a great clinical importance. In this study, our aim is to integrate transcriptomics, interactomics, and regulomics data in Saccharomyces cerevisiae using a network-based multiomics approach to enlighten previously unidentified, potential components of TOR signaling. We constructed the TOR-signaling protein interaction network, which was used as a template to search for TOR-mediated rapamycin and caffeine signaling paths. We scored the paths passing from at least one component of TOR Complex 1 or 2 (TORC1/TORC2) using the co-expression levels of the genes in the transcriptome data of the cells grown in the presence of rapamycin or caffeine. The resultant network revealed seven hitherto unannotated proteins, namely, Atg14p, Rim20p, Ret2p, Spt21p, Ylr257wp, Ymr295cp, and Ygr017wp, as potential components of TOR-mediated rapamycin and caffeine signaling in yeast. Among these proteins, we suggest further deciphering of the role of Ylr257wp will be particularly informative in the future because it was the only protein whose removal from the constructed network hindered the signal transduction to the TORC1 effector kinase Npr1p. In conclusion, this study underlines the value of network-based multiomics integrative data analysis in discovering previously unidentified components of the signaling networks by revealing potential components of TOR signaling for future experimental validation.
引用
收藏
页码:274 / 284
页数:11
相关论文
共 50 条
  • [1] Computational approaches for network-based integrative multi-omics analysis
    Agamah, Francis E.
    Bayjanov, Jumamurat R.
    Niehues, Anna
    Njoku, Kelechi F.
    Skelton, Michelle
    Mazandu, Gaston K.
    Ederveen, Thomas H. A.
    Mulder, Nicola
    Chimusa, Emile R.
    't Hoen, Peter A. C.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [2] Network-based multi-omics integrative analysis methods in drug discovery: a systematic review
    Jiang, Wei
    Ye, Weicai
    Tan, Xiaoming
    Bao, Yun-Juan
    BIODATA MINING, 2025, 18 (01):
  • [3] Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease
    Lucena-Padros, Helena
    Bravo-Gil, Nereida
    Tous, Cristina
    Rojano, Elena
    Seoane-Zonjic, Pedro
    Fernandez, Raquel Maria
    Ranea, Juan A. G.
    Antinolo, Guillermo
    Borrego, Salud
    BIOMOLECULES, 2024, 14 (02)
  • [4] Network-based prioritization of cancer genes by integrative ranks from multi-omics data
    Shang, Haixia
    Liu, Zhi-Ping
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 119
  • [5] An integrative multi-omics network-based approach identifies key regulators for breast cancer
    Chen, Yi-Xiao
    Chen, Hao
    Rong, Yu
    Jiang, Feng
    Chen, Jia-Bin
    Duan, Yuan-Yuan
    Zhu, Dong-Li
    Yang, Tie-Lin
    Dai, Zhijun
    Dong, Shan-Shan
    Guo, Yan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2826 - 2835
  • [6] Integrative Analysis of Multi-Omics Data Based on Blockwise Sparse Principal Components
    Park, Mira
    Kim, Doyoen
    Moon, Kwanyoung
    Park, Taesung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (21) : 1 - 17
  • [7] MOPA: An integrative multi-omics pathway analysis method for measuring omics activity
    Jeon, Jaemin
    Han, Eon Yong
    Jung, Inuk
    PLOS ONE, 2023, 18 (03):
  • [8] PathwayPCA: an R/Bioconductor Package for Pathway Based Integrative Analysis of Multi-Omics Data
    Odom, Gabriel J.
    Ban, Yuguang
    Colaprico, Antonio
    Liu, Lizhong
    Silva, Tiago Chedraoui
    Sun, Xiaodian
    Pico, Alexander R.
    Zhang, Bing
    Wang, Lily
    Chen, Xi
    PROTEOMICS, 2020, 20 (21-22)
  • [9] Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy
    Liu, Pei-Pei
    Yu, Xin-Yue
    Pan, Qing-Qing
    Ren, Jia-Jun
    Han, Yu-Xuan
    Zhang, Kai
    Wang, Yan
    Huang, Yin
    Ban, Tao
    PHARMACEUTICALS, 2025, 18 (01)
  • [10] A pan-cancer integrative pathway analysis of multi-omics data
    Linder, Henry
    Zhang, Yuping
    QUANTITATIVE BIOLOGY, 2020, 8 (02) : 130 - 142