Background/objective: Thrombin-activatable fibrinolysis inhibitor (TAFI) is a plasma carboxypeptidase that renders a fibrin-containing thrombus less sensitive to lysis. In the present study, we describe the development of a murine model of vena cava thrombosis and its use to characterize the antithrombotic activity of potato carboxypeptidase inhibitor (PCI) of TAFIa (activated TAFI) in mice. Methods/results: Vena cava thrombosis was induced by various concentrations of FeCl3 in C57BL/6 mice. A relatively mild stimulus (3.5% FeCl3) induced thrombosis that was consistent and sensitive to reference antithrombotic agents such as clopidogrel and heparin. Dose-response studies identified a PCI dose (5 mg kg(-1) bolus plus 5 mg kg(-1) h(-1), i.v.) that produced a maximum 45% decrease in vena cava thrombus mass as assessed by protein content (n = 8, P < 0.01 compared to vehicle) in the 3.5% FeCl3-induced model without exogenous tissue plasminogen activator administration. In contrast, PCI had no effect on 3.5% FeCl3-induced carotid artery thrombosis in mice. In a tail transection bleeding model, the 5 mg kg(-1) bolus plus 5 mg kg(-1) h(-1) dose of PCI increased tail-bleeding time up to 3.5 times control (n = 8, P < 0.05). The ex vivo activity of antithrombotic doses of PCI was also demonstrated by the enhanced lysis of whole blood clots formed in a thrombelastograph with the addition of a sub-threshold concentration of tPA. Conclusion: These studies provide evidence for a role of TAFIa in venous thrombosis in mice, and describe an optimized vena cava injury model appropriate for the evaluation of antithrombotic drugs and the characterization of novel therapeutic targets.