Bicomplexes and Backlund transformations

被引:13
作者
Dimakis, A
Müller-Hoissen, F
机构
[1] Univ Aegean, Dept Financial & Management Engn, GR-82100 Chios, Greece
[2] Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 43期
关键词
D O I
10.1088/0305-4470/34/43/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A bicomplex is a simple mathematical structure, in particular associated with completely integrable models. The conditions defining a bicomplex are a special form of a parameter-dependent zero-curvature condition. We generalize the concept of a Darboux matrix to bicomplexes and use it to derive Backlund transformations for several models. The method also works for Moyal-deformed equations with a corresponding deformed bicomplex.
引用
收藏
页码:9163 / 9194
页数:32
相关论文
共 89 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[2]  
[Anonymous], 1979, LIE BACKLUND TRANSFO
[3]  
[Anonymous], 1994, HARMONIC MAPS INTEGR
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]   ALGEBRAIC CONSTRUCTIONS OF INTEGRABLE DYNAMIC-SYSTEMS - EXTENSIONS OF THE VOLTERRA SYSTEM [J].
BOGOYAVLENSKII, OI .
RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (03) :1-64
[6]  
BOGOYAVLENSKII OI, 1989, MATH USSR IZV, V32, P245
[7]  
BOGOYAVLENSKY OI, 1988, USSR MATH IZV, V31, P435
[8]  
BOGOYAVLENSKY OI, 1988, USSR MATH IZV, V31, P47
[9]   NON-LINEAR SCHRODINGER-EQUATION, BACKLUND-TRANSFORMATIONS AND PAINLEVE TRANSCENDENTS [J].
BOITI, M ;
PEMPINELLI, F .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1980, 59 (01) :40-58
[10]   AN EQUIVALENT REAL FORM OF THE NON-LINEAR SCHRODINGER-EQUATION AND THE PERMUTABILITY FOR BACKLUND-TRANSFORMATIONS [J].
BOITI, M ;
LADDOMADA, C ;
PEMPINELLI, F .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1981, 62 (02) :315-326