ON THE HOMEOMORPHISM GROUPS OF BRECHNER'S CONTINUA

被引:0
作者
Dijkstra, Jan J. [1 ]
Hickmann, Jurjen [1 ]
机构
[1] Vrije Univ Amsterdam, Fac Exacte Wetenschappen, Afdeling Wiskunde, NL-1081 HV Amsterdam, Netherlands
来源
HOUSTON JOURNAL OF MATHEMATICS | 2013年 / 39卷 / 01期
关键词
Homeomorphism group; complete Erdos space; almost zero-dimensional space; COMPLETE ERDOS SPACE; DIMENSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1966 Brechner introduced a series of continua M with the property that their autohomeomorphism groups H(M) are totally disconnected but not zero-dimensional. In 2001 Brechner and Kawamura showed that these groups are almost zero-dimensional and thus one-dimensional by a theorem of Oversteegen and Tymchatyn. In the present note we show that the spaces H(M) are universal for the class of almost zero-dimensional spaces. We reach this result by constructing an imbedding of complete Erdos space into H(M). An interesting by-product of this imbedding is that it allows us to conclude that H(M) is not homeomorphic to complete Erdos space.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 15 条
[1]   On topological Kadec norms [J].
Abry, M ;
Dijkstra, JJ .
MATHEMATISCHE ANNALEN, 2005, 332 (04) :759-765
[2]   TOPOLOGIES FOR HOMEOMORPHISM GROUPS [J].
ARENS, R .
AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (04) :593-610
[3]   ON DIMENSIONS OF CERTAIN SPACES OF HOMEOMORPHISMS [J].
BRECHNER, BL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (02) :516-&
[4]   On the dimension of a homeomorphism group [J].
Brechner, BL ;
Kawamura, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (02) :617-620
[5]  
Dijkstra J. J., 2010, MEM AM MATH SOC, V209
[6]   Characterizing stable complete ErdAs space [J].
Dijkstra, Jan J. .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 186 (01) :477-507
[7]   Characterizing Complete Erdos Space [J].
Dijkstra, Jan J. ;
van Mill, Jan .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (01) :124-140
[8]   A counterexample concerning line-free groups and complete Erdos space [J].
Dijkstra, JJ ;
VAN Mill, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) :2281-2283
[9]   Complete Erdos space is unstable [J].
Dijkstra, JJ ;
Van Mill, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 :465-473
[10]  
Dobrowolski T, 1996, STUD MATH, V118, P49