Methyl Salicylate Enhances Flavonoid Biosynthesis in Tea Leaves by Stimulating the Phenylpropanoid Pathway

被引:63
|
作者
Li, Xin [1 ]
Zhang, Li-Ping [1 ]
Zhang, Lan [1 ]
Yan, Peng [1 ]
Ahammed, Golam Jalal [2 ]
Han, Wen-Yan [1 ]
机构
[1] Chinese Acad Agr Sci, Tea Res Inst, Key Lab Tea Qual & Safety Control, Minist Agr, 9 Meiling Rd, Hangzhou 310008, Zhejiang, Peoples R China
[2] Henan Univ Sci & Technol, Coll Forestry, Luoyang 471023, Peoples R China
来源
MOLECULES | 2019年 / 24卷 / 02期
基金
国家重点研发计划;
关键词
salicylic acid; flavonoids; phenylpropanoid pathway; phenylalanine ammonia-lyase (PAL); tea quality; CAMELLIA-SINENSIS L; ACCUMULATION;
D O I
10.3390/molecules24020362
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The phytohormone salicylic acid (SA) is a secondary metabolite that regulates plant growth, development and responses to stress. However, the role of SA in the biosynthesis of flavonoids (a large class of secondary metabolites) in tea (Camellia sinensis L.) remains largely unknown. Here, we show that exogenous methyl salicylate (MeSA, the methyl ester of SA) increased flavonoid concentration in tea leaves in a dose-dependent manner. While a moderate concentration of MeSA (1 mM) resulted in the highest increase in flavonoid concentration, a high concentration of MeSA (5 mM) decreased flavonoid concentration in tea leaves. A time-course of flavonoid concentration following 1 mM MeSA application showed that flavonoid concentration peaked at 2 days after treatment and then gradually declined, reaching a concentration lower than that of control after 6 days. Consistent with the time course of flavonoid concentration, MeSA enhanced the activity of phenylalanine ammonia-lyase (PAL, a key enzyme for the biosynthesis of flavonoids) as early as 12 h after the treatment, which peaked after 1 day and then gradually declined upto 6 days. qRT-PCR analysis of the genes involved in flavonoid biosynthesis revealed that exogenous MeSA upregulated the expression of genes such as CsPAL, CsC4H, Cs4CL, CsCHS, CsCHI, CsF3H, CsDFR, CsANS and CsUFGT in tea leaves. These results suggest a role for MeSA in modulating the flavonoid biosynthesis in green tea leaves, which might have potential implications in manipulating the tea quality and stress tolerance in tea plants.
引用
收藏
页数:8
相关论文
共 41 条
  • [41] Accumulation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis
    Rivasseau, Corinne
    Seemann, Myriam
    Boisson, Anne-Marie
    Streb, Peter
    Gout, Elisabeth
    Douce, Roland
    Rohmer, Michel
    Bligny, Richard
    PLANT CELL AND ENVIRONMENT, 2009, 32 (01): : 82 - 92