Finite Volume Scheme and Renormalized Solutions for a Noncoercive Elliptic Problem with L1 Data

被引:2
作者
Leclavier, Sarah [1 ]
机构
[1] Univ Rouen, UMR CNRS 6085, Lab Math Raphael Salem, Ave Univ,BP 12, F-76801 St Etienne, France
关键词
Finite Volume; Renormalized Solutions; Convection-Diffusion Problem; Noncoercive; L-1; Data; Uniqueness; EQUATIONS;
D O I
10.1515/cmam-2016-0034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper proves the convergence of the finite volume approximate solution of a convection-diffusion equation with an L-1 right-hand side to the unique renormalized solution. The main difficulties are to handle the noncoercive character of the operator and the L-1 data. Mixing the techniques of renormalized solutions and the finite volume method allows one to derive estimates for the discrete solutions and in particular a discrete version of the decay of the truncated energy. Indeed, as in the continuous case, the decay of the truncated energy is crucial to show that the limit of the approximate solution is the renormalized solution.
引用
收藏
页码:85 / 104
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1964, Ann. Scuola Norm. Sup. Pisa
[2]  
Ben Cheikh Ali M., 2006, Adv. Math. Sci. Appl, V16, P275
[3]  
Ben Cheikh Ali M., 1999, C R ACAD SCI PARIS 1, V329, P967
[4]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[5]   ON SOME NONLINEAR ELLIPTIC-EQUATIONS INVOLVING DERIVATIVES OF THE NONLINEARITY [J].
CARRILLO, J ;
CHIPOT, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 100 :281-294
[6]   Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 [J].
Casado-Diaz, J. ;
Rebollo, T. Chacon ;
Girault, V. ;
Marmol, M. Gomez ;
Murat, F. .
NUMERISCHE MATHEMATIK, 2007, 105 (03) :337-374
[7]   Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions [J].
Chainais-Hillairet, Claire ;
Droniou, Jerome .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) :61-85
[8]   Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations [J].
Coudière, Y ;
Gallouët, T ;
Herbin, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :767-778
[9]  
Dal Maso G., 1999, ANN SC NORM SUPER PI, V28, P741
[10]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366