SECOND ORDER CORRECTOR IN THE HOMOGENIZATION OF A CONDUCTIVE-RADIATIVE HEAT TRANSFER PROBLEM

被引:52
作者
Allaire, Gregoire [1 ,2 ]
Habibi, Zakaria [1 ,3 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[2] CEA Saclay, DM2S, F-91191 Gif Sur Yvette, France
[3] CEA Saclay, DM2S SFME LTMF, F-91191 Gif Sur Yvette, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2013年 / 18卷 / 01期
关键词
Porous media; periodic homogenization; correctors; heat transfer; radiative transfer; PERIODIC HOMOGENIZATION;
D O I
10.3934/dcdsb.2013.18.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the contribution of the so-called second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. More precisely, heat is diffusing in a periodically perforated domain with a non-local boundary condition modelling the radiative transfer in each hole. If the source term is a periodically oscillating function (which is the case in our application to nuclear reactor physics),a strong gradient of the temperature takes place in each periodicity cell, corresponding to a large heat flux between the sources and the perforations. This effect cannot be taken into account by the homogenized model, neither by the first order corrector. We show that this local gradient effect can be reproduced if the second order corrector is added to the reconstructed solution.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 39 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]  
Allaire G., 1999, ESAIM: Control, Optimisation and Calculus of Variations, V4, P209, DOI 10.1051/cocv:1999110
[3]  
Allaire G., 2012, HOMOGENIZATION UNPUB
[4]   HOMOGENIZATION OF A CONDUCTIVE AND RADIATIVE HEAT TRANSFER PROBLEM [J].
Allaire, Gregoire ;
El Ganaoui, Karima .
MULTISCALE MODELING & SIMULATION, 2009, 7 (03) :1148-1170
[5]  
Amosov A. A., 2010, J MATH SCI, V164, P309
[6]  
[Anonymous], 1999, OXFORD LECT SER MATH
[7]  
[Anonymous], 278 IRIALABORIA
[8]  
[Anonymous], 2003, RAD HEAT TRANSFER
[9]  
Bakhvalov N. S., 1989, MATH ITS APPL SOVIET, V36
[10]  
Bensoussan A., 1978, Asymptotic analysis for periodic structures