Handle Slides and Localizations of Categories

被引:5
作者
Cooper, Benjamin [1 ]
Krushkal, Vyacheslav [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
3-MANIFOLDS; INVARIANTS; HOMOLOGY; CATEGORIFICATION;
D O I
10.1093/imrn/rns108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a means by which some categorifications can be evaluated at a root of unity. This is implemented using a suitable localization in the context of prior work by the authors on categorification of the Jones-Wenzl projectors. Within this localized category, we define objects that decategorify to the SU(2) quantum invariants at low levels. These objects are invariant under handle slides, a property important for defining invariants of 3-manifolds in the context of Kirby calculus.
引用
收藏
页码:2179 / 2202
页数:24
相关论文
共 32 条
[11]  
Freedman M., 2008, TOPOLOGY PHYS, V12, P19
[12]   Categorifying fractional Euler characteristics, Jones-Wenzl projectors and 3j-symbols [J].
Frenkel, Igor ;
Stroppel, Catharina ;
Sussan, Joshua .
QUANTUM TOPOLOGY, 2012, 3 (02) :181-253
[13]  
Gelfand S., 1999, HOMOLOGICAL ALGEBRA
[14]  
Kauffman LH, 1994, Ann. of Math. Stud., V134
[15]   A categorification of the Jones polynomial [J].
Khovanov, M .
DUKE MATHEMATICAL JOURNAL, 2000, 101 (03) :359-426
[16]  
Khovanov M., 2005, ARXIVMATH0509083
[17]  
Khovanov M., 2002, ALGEBR GEOM TOPOL, V2, P665
[18]   Link homology and Frobenius extensions [J].
Khovanov, Mikhail .
FUNDAMENTA MATHEMATICAE, 2006, 190 :179-190
[19]   CALCULUS FOR FRAMED LINKS IN S3 [J].
KIRBY, R .
INVENTIONES MATHEMATICAE, 1978, 45 (01) :35-56
[20]  
Lickorish W. B. R., 1997, An Introduction to Knot Theory