Handle Slides and Localizations of Categories

被引:5
作者
Cooper, Benjamin [1 ]
Krushkal, Vyacheslav [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
3-MANIFOLDS; INVARIANTS; HOMOLOGY; CATEGORIFICATION;
D O I
10.1093/imrn/rns108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a means by which some categorifications can be evaluated at a root of unity. This is implemented using a suitable localization in the context of prior work by the authors on categorification of the Jones-Wenzl projectors. Within this localized category, we define objects that decategorify to the SU(2) quantum invariants at low levels. These objects are invariant under handle slides, a property important for defining invariants of 3-manifolds in the context of Kirby calculus.
引用
收藏
页码:2179 / 2202
页数:24
相关论文
共 32 条
[1]  
Achar P., 2011, ARXIV11052715
[2]  
[Anonymous], 2001, ANN MATH STUDIES
[3]   Presheaves of triangulated categories and reconstruction of schemes [J].
Balmer, P .
MATHEMATISCHE ANNALEN, 2002, 324 (03) :557-580
[4]   Khovanov's homology for tangle and cobordisms [J].
Bar-Natan, D .
GEOMETRY & TOPOLOGY, 2005, 9 :1443-1499
[5]   Topological quantum field theories derived from the Kauffman bracket [J].
Blanchet, C ;
Habegger, N ;
Masbaum, G ;
Vogel, P .
TOPOLOGY, 1995, 34 (04) :883-927
[6]   INVARIANTS ON 3-MANIFOLDS WITH SPIN STRUCTURE [J].
BLANCHET, C .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (03) :406-427
[7]   On the functors CWA and P-A [J].
Chacholski, W .
DUKE MATHEMATICAL JOURNAL, 1996, 84 (03) :599-631
[8]   Categorification of the Jones-Wenzl projectors [J].
Cooper, Benjamin ;
Krushkal, Vyacheslav .
QUANTUM TOPOLOGY, 2012, 3 (02) :139-180
[9]   SO(3) homology of graphs and links [J].
Cooper, Benjamin ;
Hogancamp, Matt ;
Krushkal, Vyacheslav .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (04) :2137-2166
[10]   2-D PHYSICS AND 3-D TOPOLOGY [J].
CRANE, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (03) :615-640