Stability Conditions of Monomial Bases and Comprehensive Grobner Systems

被引:0
|
作者
Nabeshima, Katsusuke [1 ]
机构
[1] Univ Tokushima, Inst Socioarts & Sci, Tokushima 7708502, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new stability condition of monomial bases is introduced. This stability condition is stronger than Kapur-Sun-Wang's one. Moreover, a new algorithm for computing comprehensive Grobner systems, is also introduced by using the new stability condition. A number of segments generated by the new algorithm is smaller than that of segments of in Kapur-Sun-Wang's algorithm.
引用
收藏
页码:248 / 259
页数:12
相关论文
共 50 条
  • [21] Multiplicative bases, Grobner bases, and right Grobner bases
    Green, EL
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 601 - 623
  • [22] Triangular systems and factorized Grobner bases
    Grabe, HG
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1995, 948 : 248 - 261
  • [23] Railway interlocking systems and Grobner bases
    Roanes-Lozano, E
    Roanes-Macías, E
    Laita, LM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 51 (05) : 473 - 481
  • [24] Grobner bases for polynomial systems with parameters
    Montes, Antonio
    Wibmer, Michael
    JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (12) : 1391 - 1425
  • [25] Constrained Hamiltonian systems and Grobner bases
    Gerdt, VP
    Gogilidze, SA
    CASC'99: COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 1999, : 139 - 146
  • [26] Grobner bases: A short introduction for systems theorists
    Buchberger, B
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2001, 2001, 2178 : 1 - 19
  • [27] Grobner bases and multidimensional FIR multirate systems
    Oakland Univ, Rochester, United States
    Multidimens Syst Signal Proc, 1-2 (11-30):
  • [28] Grobner bases for problem solving in multidimensional systems
    Charoenlarpnopparut, C
    Bose, NK
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2001, 12 (3-4) : 365 - 376
  • [29] A tutorial on Grobner bases with applications in signals and systems
    Lin, Zhiping
    Xu, Li
    Bose, Nirmal K.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (01) : 433 - 449
  • [30] Grobner bases and multidimensional FIR multirate systems
    Park, H
    Kalker, T
    Vetterli, M
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1997, 8 (1-2) : 11 - 30