Weyl's theorems for some classes of operators

被引:26
作者
Aiena, P
Villafañe, F
机构
[1] Univ Palermo, Fac Ingn, Dipartimento Matemat & Applicaz, I-90128 Palermo, Italy
[2] Univ UCLA Barquisimeto, Fac Ciencias, Dept Matemat, Barquisimeto, Venezuela
关键词
Fredholm theory; Weyl's theorem; multipliers of semi-simple Banach algebras;
D O I
10.1007/s00020-003-1331-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the class of operators on Banach spaces having property (H) and study Weyl's theorems, and related results for operators which satisfy this property. We show that a-Weyl's theorem holds for every decomposable operator having property (H). We also show that a-Weyl's theorem hold,; for every multiplier T of a commutative semi-simple regular Tauberian Banach algebra. In particular every convolution operator T, of a group algebra L-1(G), G a locally compact abelian group, satisfies a-Weyl's theorem. Similar results are given for multipliers of other important commutative Banach algebras.
引用
收藏
页码:453 / 466
页数:14
相关论文
共 26 条
[1]   Single-valued extension property at the points of the approximate point spectrum [J].
Aiena, P ;
Rosas, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) :180-188
[2]   MULTIPLIERS WITH CLOSED RANGE ON REGULAR COMMUTATIVE BANACH-ALGEBRAS [J].
AIENA, P ;
LAURSEN, KB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (04) :1039-1048
[3]   Operators which have a closed quasi-nilpotent part [J].
Aiena, P ;
Colasante, ML ;
González, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) :2701-2710
[4]  
AIENA P, 2002, IN PRESS P ROYAL IR
[5]  
AIENA P, 2003, WEYLS THEOREM WEYLS
[6]  
AIENA P, 2001, ACTA SCI MATH SZEGED, V67, P461
[7]   ON P-HYPONORMAL OPERATORS FOR 0 LESS-THAN P LESS-THAN 1 [J].
ALUTHGE, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (03) :307-315
[8]   Spectral and structural properties of log-hyponormal operators [J].
Cho, M ;
Jeon, IH ;
Lee, JI .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :345-350
[9]  
Coburn LA., 1970, Michigan Math J, V20, P529
[10]  
Conway J. B., 1970, MICH MATH J, V20, P529