Nonpolynomial fitting of multiparameter functions

被引:26
作者
Schulte, J
机构
[1] Electron Devices Department, Hitachi Central Research Laboratory, Hitachi Ltd., Tokyo
关键词
D O I
10.1103/PhysRevE.53.R1348
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A stochastic self-regulating simulated annealing optimization method is presented, and compared to other optimization methods such as the simplex, steepest descent, and the recently proposed fast fitting method by Penna [Phys. Rev. E 51, R1 (1995)]. The presented method converges faster towards an acceptable set of optimization parameters than the other methods, and it is less susceptible to local minima of nonconvex functions. Examples are shown for fitting a simple two parameter Gaussian function and a complicated multiple parameter three-body interaction potential function.
引用
收藏
页码:R1348 / R1350
页数:3
相关论文
共 8 条
[1]  
[Anonymous], ANN REV COMPUTATIONA
[2]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[3]  
Penna T. J. P., 1995, Computers in Physics, V9, P341, DOI 10.1063/1.168533
[4]   TRAVELING SALESMAN PROBLEM AND TSALLIS STATISTICS [J].
PENNA, TJP .
PHYSICAL REVIEW E, 1995, 51 (01) :R1-R3
[5]  
SCHULTE J, UNPUB
[6]   FAST SIMULATED ANNEALING [J].
SZU, H ;
HARTLEY, R .
PHYSICS LETTERS A, 1987, 122 (3-4) :157-162
[7]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[8]  
319501416