Modified scattering for the Vlasov-Poisson system

被引:9
|
作者
Choi, Sun-Ho [1 ,2 ]
Kwon, Soonsik [3 ]
机构
[1] Kyung Hee Univ, Dept Appl Math, 1732 Deogyeong Daero, Yongin 17104, South Korea
[2] Kyung Hee Univ, Inst Nat Sci, 1732 Deogyeong Daero, Yongin 17104, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Vlasov-Poisson; modified scattering; asymptotic behavior; LONG-RANGE SCATTERING; NONLINEAR SCHRODINGER-EQUATIONS; SYMMETRIC-SOLUTIONS; HARTREE-EQUATIONS; GLOBAL EXISTENCE; SPACE DIMENSION; INITIAL DATA; REGULARITY; STABILITY;
D O I
10.1088/0951-7715/29/9/2755
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of dispersing solutions to the Vlasov-Poisson system. Due to long interaction range, we do not expect linear scattering (Choi S-H and Ha S-Y 2011 SIAM J. Math. Anal. 43 2050-77). Instead, we prove a modified scattering result (or long range scattering result) of small and dispersing solutions. We find a quasi-free forward trajectory so that along the trajectory, the solution has an asymptotic limit. We extract the logarithmic growth part of the Duhamel term, and absorb it into the quasi-free trajectory, then the remaining part enjoys faster decay so as to obtain the asymptotic state.
引用
收藏
页码:2755 / 2774
页数:20
相关论文
共 50 条