Mitochondria, Maternal Inheritance, and Male Aging

被引:160
作者
Camus, M. Florencia [1 ]
Clancy, David J. [2 ]
Dowling, Damian K. [1 ]
机构
[1] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia
[2] Univ Lancaster, Sch Hlth & Med, Div Biomed & Life Sci, Lancaster LA1 4YQ, England
基金
澳大利亚研究理事会;
关键词
DROSOPHILA-MELANOGASTER; MOTHERS CURSE; SEED BEETLE; NUCLEAR; FITNESS; POPULATIONS; VIABILITY; EVOLUTION; SELECTION; GENOTYPE;
D O I
10.1016/j.cub.2012.07.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The maternal transmission of mitochondrial genomes invokes a sex-specific selective sieve, whereby mutations in mitochondrial DNA can only respond to selection acting directly on females [1-3]. In theory, this enables male-harming mutations to accumulate in mitochondrial genomes when these same mutations are neutral, beneficial, or only slightly deleterious in their effects on females [1-3]. Ultimately, this evolutionary process could result in the evolution of male-specific mitochondrial mutation loads; an idea previously termed Mother's Curse [2, 4-6]. Here, we present evidence that the effects of this process are broader than hitherto realized, and that it has resulted in mutation loads affecting patterns of aging in male, but not female Drosophila melanogaster. Furthermore, our results indicate that the mitochondrial mutation loads affecting male aging generally comprise numerous mutations over multiple sites. Our findings thus suggest that males are subject to dramatic consequences that result from the maternal transmission of mitochondrial genomes. They implicate the diminutive mitochondrial genome as a hotspot for mutations that affect sex-specific patterns of aging, thus promoting the idea that a sex-specific selective sieve in mitochondrial genome evolution is a contributing factor to sexual dimorphism in aging, commonly observed across species [7-9].
引用
收藏
页码:1717 / 1721
页数:5
相关论文
共 27 条