Revising uniqueness for a nonlinear diffusion-convection equation

被引:8
作者
Andreianov, B.
Igbida, N.
机构
[1] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140, F-80038 Amiens, France
[2] Univ Franche Comte, Math Lab, F-25000 Besancon, France
关键词
D O I
10.1016/j.jde.2005.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides a generalized and simplified proof of the uniqueness of a weak solution for nonlinear diffusion-convection problems of Stefan type with homogeneous boundary conditions and continuous convection. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 21 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]   Existence of renormalized solutions of degenerate elliptic-parabolic problems [J].
Ammar, K ;
Wittbold, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :477-496
[3]  
Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI DOI 10.1080/03605307908820117
[4]  
Benilan P, 1999, RAIRO-MATH MODEL NUM, V33, P121
[5]  
BREZIS H, 1979, J MATH PURE APPL, V58, P153
[6]  
CARILLO J, 1999, J DIFFER EQUATIONS, V1, P93
[7]   Entropy solutions for nonlinear degenerate problems [J].
Carrillo, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (04) :269-361
[8]   Divergence-measure fields and hyperbolic conservation laws [J].
Chen, GQ ;
Frid, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 147 (02) :89-118
[9]  
Gagneux G., 1996, MATH APPL
[10]  
HILDEBRAND F, 1975, DOKL AKAD NAUK SSSR, V220, P300