Chondrocytes Directly Transform into Bone Cells in Mandibular Condyle Growth

被引:100
作者
Jing, Y. [1 ]
Zhou, X. [2 ]
Han, X. [3 ]
Jing, J. [1 ]
von der Mark, K. [4 ]
Wang, J. [1 ]
de Crombrugghe, B. [2 ]
Hinton, R. J. [1 ]
Feng, J. Q. [1 ]
机构
[1] Texas A&M Baylor Coll Dent, Dept Biomed Sci, Dallas, TX 75246 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Genet, Houston, TX 77030 USA
[3] Sichuan Univ, West China Hosp Stomatol, State Key Lab Oral Dis, Chengdu, Peoples R China
[4] Univ Erlangen Nurnberg, Nikolaus Fiebiger Ctr Mol Med, Dept Expt Med 1, D-91054 Erlangen, Germany
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
osteoblast; osteocyte; temporomandibular joint; cell lineage tracing; development; cell transformation; HYPERTROPHIC CHONDROCYTES; EXPRESSION; CARTILAGE; OSTEOBLASTS; COLLAGEN; MATRIX; PLATE; FATE; MICE;
D O I
10.1177/0022034515598135
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
For decades, it has been widely accepted that hypertrophic chondrocytes undergo apoptosis prior to endochondral bone formation. However, very recent studies in long bone suggest that chondrocytes can directly transform into bone cells. Our initial in vivo characterization of condylar hypertrophic chondrocytes revealed modest numbers of apoptotic cells but high levels of antiapoptotic Bcl-2 expression, some dividing cells, and clear alkaline phosphatase activity (early bone marker). Ex vivo culture of newborn condylar cartilage on a chick chorioallantoic membrane showed that after 5 d the cells on the periphery of the explants had begun to express Col1 (bone marker). The cartilage-specific cell lineage-tracing approach in triple mice containing Rosa 26tdTomato (tracing marker), 2.3 Col1GFP (bone cell marker), and aggrecan CreERT2 (onetime tamoxifen induced) or Col10-Cre (activated from E14.5 throughout adult stage) demonstrated the direct transformation of chondrocytes into bone cells in vivo. This transformation was initiated at the inferior portion of the condylar cartilage, in contrast to the initial ossification site in long bone, which is in the center. Quantitative data from the Col10-Cre compound mice showed that hypertrophic chondrocytes contributed to similar to 80% of bone cells in subchondral bone, similar to 70% in a somewhat more inferior region, and similar to 40% in the most inferior part of the condylar neck (n = 4, P < 0.01 for differences among regions). This multipronged approach clearly demonstrates that a majority of chondrocytes in the fibrocartilaginous condylar cartilage, similar to hyaline cartilage in long bones, directly transform into bone cells during endochondral bone formation. Moreover, ossification is initiated from the inferior portion of mandibular condylar cartilage with expansion in one direction.
引用
收藏
页码:1668 / 1675
页数:8
相关论文
共 50 条
  • [1] Biomechanically stimulated chondrocytes promote osteoclastic bone resorption in the mandibular condyle
    Kuang, Bin
    Zeng, Zhaobin
    Qin, Qing
    ARCHIVES OF ORAL BIOLOGY, 2019, 98 : 248 - 257
  • [2] Vital Roles of β-catenin in Trans-differentiation of Chondrocytes to Bone Cells
    Jing, Yan
    Jing, Junjun
    Wang, Ke
    Chan, Kevin
    Harris, Stephen E.
    Hinton, Robert J.
    Feng, Jian Q.
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2018, 14 (01): : 1 - 9
  • [3] Developmental characteristics of secondary cartilage in the mandibular condyle and sphenoid bone in mice
    Hirouchi, Hidetomo
    Kitamura, Kei
    Yamamoto, Masahito
    Odaka, Kento
    Matsunaga, Satoru
    Sakiyama, Koji
    Abe, Shinichi
    ARCHIVES OF ORAL BIOLOGY, 2018, 89 : 84 - 92
  • [4] Bilateral anterior elevation prosthesis boosts chondrocytes proliferation in mice mandibular condyle
    Liu, Qian
    Yang, Hong-xu
    Duan, Jing
    Zhang, Hong-yun
    Xie, Mian-jiao
    Ren, Hao-tian
    Zhang, Mian
    Zhang, Jing
    Lu, Lei
    Liu, Xiao-dong
    Yu, Shi-bin
    Wang, Mei-qing
    ORAL DISEASES, 2019, 25 (06) : 1589 - 1599
  • [5] Effects of Bisphosphonate on the Endochondral Bone Formation of the Mandibular Condyle
    Kim, M. S.
    Jung, S. Y.
    Kang, J. H.
    Kim, H. J.
    Ko, H. M.
    Jung, J. Y.
    Koh, J. T.
    Kim, W. J.
    Kim, S. M.
    Lee, E. J.
    Kim, S. H.
    ANATOMIA HISTOLOGIA EMBRYOLOGIA, 2009, 38 (05) : 321 - 326
  • [6] Crosstalk between immune cells and bone cells or chondrocytes
    Deng, Zhiqin
    Zhang, Qian
    Zhao, Zhe
    Li, Yongshen
    Chen, Xiaoqiang
    Lin, Zicong
    Deng, Zhenhan
    Liu, Jianquan
    Duan, Li
    Wang, Daping
    Li, Wencui
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2021, 101
  • [7] TNF Accelerates Death of Mandibular Condyle Chondrocytes in Rats with Biomechanical Stimulation-Induced Temporomandibular Joint Disease
    Yang, Hongxu
    Zhang, Mian
    Wang, Xin
    Zhang, Hongyun
    Zhang, Jing
    Jing, Lei
    Liao, Lifan
    Wang, Meiqing
    PLOS ONE, 2015, 10 (11):
  • [8] Condyle and mandibular bone change after unilateral condylar neck fracture in growing rats
    Hu, Y.
    Yang, H. -F.
    Li, S.
    Chen, J. -z.
    Luo, Y. -w.
    Yang, C.
    INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2012, 41 (08) : 912 - 921
  • [9] The effect of bone mass and architecture on mandibular condyle after mandibular distraction
    Suda, Daisuke
    Ohazama, Atsushi
    Maeda, Takeyasu
    Kobayashi, Tadaharu
    ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2017, 124 (04): : 339 - 347
  • [10] Overexpressed TGF-β in Subchondral Bone Leads to Mandibular Condyle Degradation
    Jiao, K.
    Zhang, M.
    Niu, L.
    Yu, S.
    Zhen, G.
    Xian, L.
    Yu, B.
    Yang, K.
    Liu, P.
    Cao, X.
    Wang, M.
    JOURNAL OF DENTAL RESEARCH, 2014, 93 (02) : 140 - 147