Solving a family of Thue equations with an application to the equation x2-Dy4=1

被引:44
作者
Togbe, A
Voutier, PM
Walsh, PG
机构
[1] Purdue Univ N Cent, Dept Math, Westville, IN 46391 USA
[2] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
关键词
D O I
10.4064/aa120-1-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:39 / 58
页数:20
相关论文
共 21 条
[1]   The diophantine equation b2X4-dY2=1 [J].
Bennett, MA ;
Walsh, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (12) :3481-3491
[2]   DIOPHANTINE EQUATION 3X4-2Y3=1 [J].
BUMBY, RT .
MATHEMATICA SCANDINAVICA, 1967, 21 (01) :144-&
[3]   NMR sequence analysis for copolymers made at high conversions [J].
Cheng, HN .
INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 1997, 4 (01) :71-85
[4]  
Cohn JHE, 1997, ACTA ARITH, V78, P401
[5]  
KO C, 1965, SCI SINICA, V14, P457
[6]   COMPLETE SOLUTION OF A FAMILY OF QUARTIC THUE EQUATIONS [J].
LETTL, G ;
PETHO, A .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1995, 65 :365-383
[7]   Simple families of Thue inequalities [J].
Lettl, G ;
Pethö, A ;
Voutier, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (05) :1871-1894
[8]  
LJUNGGREN W, 1936, EINIGE EIGENSCHAFTEN, P1
[9]  
LJUNGGREN W., 1954, TOLFTE SKANDINAVISKA, P188
[10]  
LJUNGGREN W, 1942, AVH NORSK VID AKAD O, P1