Leverrier's algorithm for orthogonal polynomial bases

被引:4
作者
Barnett, S
机构
[1] Dept. of Appl. Mathematical Studies, University of Leeds
关键词
D O I
10.1016/0024-3795(94)00158-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Leverrier-Fadeev algorithm for simultaneous computation of the adjoint B(lambda) and determinant a(lambda) of the characteristic matrix lambda I - A is extended to the case when both B(lambda) and a(lambda) are expressed relative to a basis of orthogonal polynomials. Specific formulae are derived for the cases of Chebyshev, Hermite, Legendre, and Laguerre polynomials.
引用
收藏
页码:245 / 263
页数:19
相关论文
共 17 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
[2]   EUCLIDEAN REMAINDERS FOR GENERALIZED POLYNOMIALS [J].
BARNETT, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 99 :111-122
[3]   DIVISION OF GENERALIZED POLYNOMIALS USING THE COMRADE MATRIX [J].
BARNETT, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 60 (AUG) :159-175
[4]   LEVERRIERS ALGORITHM - A NEW PROOF AND EXTENSIONS [J].
BARNETT, S .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1989, 10 (04) :551-556
[5]   CHANGE OF BASIS FOR PRODUCTS OF ORTHOGONAL POLYNOMIALS [J].
BARNETT, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (02) :155-162
[6]   MULTIPLICATION OF GENERALIZED POLYNOMIALS, WITH APPLICATIONS TO CLASSICAL ORTHOGONAL POLYNOMIALS [J].
BARNETT, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (04) :457-462
[7]  
Barnett S., 1983, POLYNOMIALS LINEAR C
[8]  
FOX L, 1972, CHEBYSHEV POLYNOMIAL, P61
[9]  
FRAME JS, 1964, IEEE SPECTRUM, V1, P123
[10]  
GANTMACHER FR, 1960, THEORY MATRICES, V1, P87