Ship Detection by Modified RetinaNet

被引:0
作者
Wang, Yingying [1 ]
Li, Wei [1 ]
Li, Xiang [1 ]
Sun, Xu [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China
来源
2018 10TH IAPR WORKSHOP ON PATTERN RECOGNITION IN REMOTE SENSING (PRRS) | 2018年
关键词
Ship detection; Multi-scale network; Convolutional neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ship detection in optical remote sensing imagery has been a hot topic in recent years and achieved promising performance. However, there are still several problems in detecting ships with various sizes. The key objective of all scales precise positioning is to obtain a high resolution feature map while having a high semantic characteristic information. Based on this idea, a modified RetinaNet (M-RetinaNet) is proposed to build dense connections between shallow and deep feature maps, which aims at solving problems resulting from different sizes of ships. It consists of a baseline residual network and a modified multi-scale network. The modified multi-scale network includes a top-down pathway and a bottom-up pathway, both of which build on the multi-scale base network. The benefits of this model are two folds: first, it can generate feature maps with high semantic information at each layer by introducing dense lateral connections from deep to shallow; second, it maintains high spatial resolution in deep layers. Comprehensive evaluations on a ship dataset and comparison with several state-of-the-art approaches demonstrate the effectiveness of the proposed network.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
Agrawal P, 2014, LECT NOTES COMPUT SC, V8695, P329, DOI 10.1007/978-3-319-10584-0_22
[2]   End-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images [J].
Chen, Zhong ;
Zhang, Ting ;
Ouyang, Chao .
REMOTE SENSING, 2018, 10 (01)
[3]  
DAI J, 2016, COMPUTER VISION PATT, P1796
[4]   Identity Mappings in Deep Residual Networks [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :630-645
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]   Finding Tiny Faces [J].
Hu, Peiyun ;
Ramanan, Deva .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1522-1530
[7]  
Li Ke, 2017, IEEE T GEOSCI REMOTE, VPP, P1
[8]  
Lin T-Y, 2017, PROC CVPR IEEE, P2117, DOI [DOI 10.1109/CVPR.2017.106, 10.1109/CVPR.2017.106]
[9]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[10]   SSD: Single Shot MultiBox Detector [J].
Liu, Wei ;
Anguelov, Dragomir ;
Erhan, Dumitru ;
Szegedy, Christian ;
Reed, Scott ;
Fu, Cheng-Yang ;
Berg, Alexander C. .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :21-37