Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs

被引:39
作者
Sinusaite, Lauryna [1 ]
Renner, Alexander M. [2 ]
Schuetz, Markus B. [2 ]
Antuzevics, Andris [3 ]
Rogulis, Uldis [3 ]
Grigoraviciute-Puroniene, Inga [1 ]
Mathur, Sanjay [2 ]
Zarkov, Aleksej [1 ]
机构
[1] Vilnius Univ, Inst Chem, Naugarduko 24, LT-03225 Vilnius, Lithuania
[2] Univ Cologne, Inst Inorgan Chem, Greinstr 6, D-50939 Cologne, Germany
[3] Univ Latvia, Inst Solid State Phys, Kengaraga 8, LV-1063 Riga, Latvia
关键词
Tricalcium phosphate; Ca-3(PO4)(2); Polymorphism; Alpha-TCP; Beta-TCP; Mn doping; AMORPHOUS CALCIUM-PHOSPHATE; BIOMEDICAL APPLICATIONS; PARAMAGNETIC-RESONANCE; BIOLOGICAL-PROPERTIES; PHASE-TRANSITION; ALPHA; BETA; HYDROXYAPATITE; MANGANESE; CEMENTS;
D O I
10.1016/j.jeurceramsoc.2019.03.057
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs was demonstrated in alpha- and beta-TCP polymorphs prepared by wet precipitation'inethod under identical conditions and annealed at 700 degrees C. Calcium phosphates with Mn doping level in the range from 1 to 5 mol% were studied and the formation of desired polymorph was controlled by varying Mn content in as-prepared precipitates. It was found that increasing Mn content resulted in the formation of beta-TCP, while alpha-TCP was obtained with low Mn doping level, whereas a mixture of two polymorphs was obtained for intermediate Mn concentrations. Moreover, doping with Mn ions allowed the synthesis of beta-TCP at relatively low temperature (700 degrees C). Synthesized compounds were characterized by X-ray diffraction (XRD) analysis, electron paramagnetic resonance (EPR), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), inductively coupled plasma optical emission spectrometry (ICP-OES) and colorimetric MTT assay.
引用
收藏
页码:3257 / 3263
页数:7
相关论文
共 54 条
[1]  
Abdel-Fattah W.I., 2008, BIOMED MATER, V3, P1
[2]  
Altshulter S. A., 1974, ELECT PARAMAGNETIC R
[3]   Ionic substitutions in calcium phosphates synthesized at low temperature [J].
Boanini, E. ;
Gazzano, M. ;
Bigi, A. .
ACTA BIOMATERIALIA, 2010, 6 (06) :1882-1894
[4]   Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response [J].
Bouler, J. M. ;
Pilet, P. ;
Gauthier, O. ;
Verron, E. .
ACTA BIOMATERIALIA, 2017, 53 :1-12
[5]   Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings [J].
Bracci, B. ;
Torricelli, P. ;
Panzavolta, S. ;
Boanini, E. ;
Giardino, R. ;
Bigi, A. .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2009, 103 (12) :1666-1674
[6]   Influence of the Ca/P ratio and cooling rate on the allotropic α⇆β-tricalcium phosphate phase transformations [J].
Brazete, Daniela ;
Torres, P. M. C. ;
Abrantes, J. C. C. ;
Ferreira, J. M. F. .
CERAMICS INTERNATIONAL, 2018, 44 (07) :8249-8256
[7]   Phase and melting relationships of β, α and α′-Ca3(PO4)2 polymorphs in the Ca3(PO4)2-Zn3(PO4)2 system [J].
Carbajal, Leticia ;
Serena, Sara ;
Antonia Sainz, Maria ;
Caballero, Angel .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37 (05) :2277-2283
[8]   α-Tricalcium phosphate: Synthesis, properties and biomedical applications [J].
Carrodeguas, R. G. ;
De Aza, S. .
ACTA BIOMATERIALIA, 2011, 7 (10) :3536-3546
[9]   A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders [J].
Chen, Jingdi ;
Wang, Yingjun ;
Chen, Xiaofeng ;
Ren, Li ;
Lai, Chen ;
He, Wen ;
Zhang, Qiqing .
MATERIALS LETTERS, 2011, 65 (12) :1923-1926
[10]   Alpha-tricalcium phosphate (α-TCP): solid state synthesis from different calcium precursors and the hydraulic reactivity [J].
Cicek, Gulcin ;
Aksoy, Eda Ayse ;
Durucan, Caner ;
Hasirci, Nesrin .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (04) :809-817