Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables

被引:87
|
作者
Jeon, S. H. [1 ]
Cho, Y. U. [1 ]
Seo, M. W. [1 ]
Cho, J. R. [1 ,2 ]
Jeong, W. B. [1 ]
机构
[1] Pusan Natl Univ, Sch Mech Engn, Pusan 609735, South Korea
[2] Res & Dev Inst Midas IT, Gyeonggi Do 462807, South Korea
关键词
Floating offshore wind turbine; Dynamic response; Floating substructure; Mooring cable; Wave model; Fluid-rigid body interaction; PLATFORM;
D O I
10.1016/j.oceaneng.2013.07.017
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The station keeping and the rotational oscillation control are important to secure the dynamic stability of spar-type floating offshore wind turbine subject to irregular wind and wave excitations. Those are usually evaluated in terms of rigid body dynamic response of floating substructure which supports whole offshore wind turbine. In this context, this paper addresses the numerical investigation of dynamic response of a spar-type hollow cylindrical floating substructure moored by three catenary cables to irregular wave excitation. The upper part of wind turbine above wind tower is simplified as a lumped mass and the incompressible irregular potential wave flow is generated according to the Pierson-Moskowitz spectrum. The wave-floating substructure and wave-mooring cable interactions are simulated by coupling BEM and FEM in the staggered iterative manner. Through the numerical experiments, the time- and frequency-responses of a rigid spar-type hollow cylindrical floating substructure and the tension of mooring cables are investigated with respect to the total length and the connection position of mooring cables. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:356 / 364
页数:9
相关论文
共 50 条
  • [21] Concept Design and Coupled Dynamic Response Analysis on 6-MW Spar-Type Floating Offshore Wind Turbine
    Meng, Long
    Zhou, Tao
    He, Yan-ping
    Zhao, Yong-sheng
    Liu, Ya-dong
    CHINA OCEAN ENGINEERING, 2017, 31 (05) : 567 - 577
  • [22] Dynamic behavior and damage analysis of a spar-type floating offshore wind turbine under ship collision
    Ren, Yongli
    Meng, Qingshen
    Chen, Chao
    Hua, Xugang
    Zhang, Zili
    Chen, Zhengqing
    ENGINEERING STRUCTURES, 2022, 272
  • [23] Floating Spar-Type Offshore Wind Turbine Hydrodynamic Response Characterisation: a Computational Cost Aware Approach
    Coraddu, Andrea
    Oneto, Luca
    Kalikatzarakis, Miltos
    Ilardi, Davide
    Collu, Maurizio
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [24] Computationally Aware Surrogate Models for the Hydrodynamic Response Characterization of Floating Spar-Type Offshore Wind Turbine
    Ilardi, Davide
    Kalikatzarakis, Miltiadis
    Oneto, Luca
    Collu, Maurizio
    Coraddu, Andrea
    IEEE ACCESS, 2024, 12 : 6494 - 6517
  • [25] The dynamic response of a Spar-type floating wind turbine under freak waves with different properties
    Li, Yan
    Li, Haoran
    Wang, Zhenkui
    Li, Yaolong
    Wang, Bin
    Tang, Yougang
    MARINE STRUCTURES, 2023, 91
  • [26] Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect
    Qu, Xiaoqi
    Li, Yan
    Tang, Yougang
    Hu, Zhiqiang
    Zhang, Pei
    Yin, Tianchang
    APPLIED OCEAN RESEARCH, 2020, 100 (100)
  • [27] DYNAMIC RESPONSES OF A SPAR TYPE FLOATING OFFSHORE WIND TURBINE WITH FAILED MOORINGS
    Ren, Yajun
    Venugopal, Vengatesan
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 9, 2020,
  • [28] Response analysis and comparison of a spar-type floating offshore wind turbine and an onshore wind turbine under blade pitch controller faults
    Etemaddar, Mahmoud
    Blanke, Mogens
    Gao, Zhen
    Moan, Torgeir
    WIND ENERGY, 2016, 19 (01) : 35 - 50
  • [29] A New Conceptual Design and Dynamic Analysis of a Spar-Type Offshore Wind Turbine Combined with a Moonpool
    Thanh Dam Pham
    Shin, Hyunkyoung
    ENERGIES, 2019, 12 (19)
  • [30] Dynamic response analysis of a 6 MW spar-type floating offshore wind turbine under second-order wave forces
    Zhou T.
    He Y.
    Meng L.
    Zhao Y.
    Liu Y.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2018, 50 (04): : 145 - 152