Weak turbulent Kolmogorov spectrum for surface gravity waves

被引:81
作者
Dyachenko, AI
Korotkevich, AO
Zakharov, VE
机构
[1] LD Landau Theoret Phys Inst, Moscow 119334, Russia
[2] Univ Arizona, Tucson, AZ 85721 USA
[3] Waves & Solitons LLC, Gilbert, AZ 85233 USA
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.92.134501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the long-time evolution of surface gravity waves on deep water excited by a stochastic external force concentrated in moderately small wave numbers. We numerically implemented the primitive Euler equations for the potential flow of an ideal fluid with free surface written in Hamiltonian canonical variables, using the expansion of the Hamiltonian in powers of nonlinearity of terms up to fourth order. We show that because of nonlinear interaction processes a stationary Fourier spectrum of a surface elevation close to <parallel toeta(k)parallel to(2)>similar tok(-7/2) is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.
引用
收藏
页码:134501 / 1
页数:4
相关论文
共 28 条
  • [1] [Anonymous], 1967, J PPL M ECH TECHPHYS
  • [2] ON THE NONLOCAL TURBULENCE OF DRIFT TYPE WAVES
    BALK, AM
    NAZARENKO, SV
    ZAKHAROV, VE
    [J]. PHYSICS LETTERS A, 1990, 146 (04) : 217 - 221
  • [3] Measurement of the boundary frequency of the inertial interval of capillary wave turbulence at the surface of liquid hydrogen
    Brazhnikov, MY
    Kolmakov, GV
    Levchenko, AA
    Mezhov-Deglin, LP
    [J]. JETP LETTERS, 2001, 74 (12) : 583 - 585
  • [4] The turbulence of capillary waves on the surface of liquid hydrogen
    Brazhnikov, MY
    Kolmakov, GV
    Levchenko, AA
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 95 (03) : 447 - 454
  • [5] A fast method for fully nonlinear water-wave computations
    Clamond, D
    Grue, J
    [J]. JOURNAL OF FLUID MECHANICS, 2001, 447 : 337 - 355
  • [6] Kolmogorov spectra of weak turbulence in media with two types of interacting waves
    Dias, F
    Guyenne, P
    Zakharov, VE
    [J]. PHYSICS LETTERS A, 2001, 291 (2-3) : 139 - 145
  • [7] Weak turbulence of gravity waves
    Dyachenko, AI
    Korotkevich, AO
    Zakharov, VE
    [J]. JETP LETTERS, 2003, 77 (10) : 546 - 550
  • [8] Decay of the monochromatic capillary wave
    Dyachenko, AI
    Korotkevich, AO
    Zakharov, VE
    [J]. JETP LETTERS, 2003, 77 (09) : 477 - 481
  • [9] OPTICAL TURBULENCE - WEAK TURBULENCE, CONDENSATES AND COLLAPSING FILAMENTS IN THE NONLINEAR SCHRODINGER-EQUATION
    DYACHENKO, S
    NEWELL, AC
    PUSHKAREV, A
    ZAKHAROV, VE
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1992, 57 (1-2) : 96 - 160
  • [10] Evolution of a narrow-band spectrum of random surface gravity waves
    Dysthe, KB
    Trulsen, K
    Krogstad, HE
    Socquet-Juglard, H
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 478 : 1 - 10