Optimality conditions for discrete calculus of variations problems

被引:2
作者
Marinkovic, Boban [1 ]
机构
[1] Fac Min & Geol, Dept Appl Math, Belgrade 11000, Serbia
关键词
Discrete calculus of variations; Optimality conditions; Mathematical programming; 2-regularity;
D O I
10.1007/s11590-007-0059-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Nonlinear discrete calculus of variations problems with variable endpoints and with equality type constraints on trajectories are considered. We derive new non-trivial first- and second-order necessary optimality conditions.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 12 条
[1]  
[Anonymous], 2006, GRUNDLEHREN SERIES
[2]  
ARUTYUNOV A. V, 2000, OPTIMALITY CONDITION
[3]  
Arutyunov AV, 2005, VESTNIK MGU 15, V15, P43
[4]   EXTREMUM CONDITIONS FOR SMOOTH PROBLEMS WITH EQUALITY-TYPE CONSTRAINTS [J].
AVAKOV, ER .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (03) :24-32
[5]   Coupled intervals in the discrete calculus of variations: necessity and sufficiency [J].
Hilscher, R ;
Zeidan, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :396-421
[6]   Second order sufficiency criteria for a discrete optimal control problem [J].
Hilscher, R ;
Zeidan, V .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (06) :573-602
[7]   Nonnegativity and positivity of quadratic functionals in discrete calculus of variations: survey [J].
Hilscher, R ;
Zeidan, V .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (09) :857-875
[8]  
Izmailov A. F., 1994, Factor Analysis of Nonlinear Maps
[9]  
MARINKOVIC B, 2007, OPTIMIZATIO IN PRESS
[10]   Sensitivity analysis for discrete optimal control problems [J].
Marinkovic, Boban .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2006, 63 (03) :513-524