Intermittency and deterministic diffusion in chaotic ratchets

被引:8
作者
Mateos, Jose L. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico
关键词
Ratchets; Chaotic transport; Intermittency; Deterministic diffusion; Brownian motors;
D O I
10.1016/S1007-5704(03)00042-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of deterministic transport of particles in an asymmetric periodic ratchet potential of the rocking type. When the inertial term is taken into account, the dynamics can be chaotic and modify the transport properties. We calculate the bifurcation diagram as a function of the amplitude of forcing and analyze in detail the crisis bifurcation that leads to current reversals. Near this bifurcation we obtain intermittency and anomalous deterministic diffusion. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 263
页数:11
相关论文
共 42 条
  • [41] Linear and fractal diffusion coefficients in a family of one-dimensional chaotic maps
    Knight, Georgie
    Klages, Rainer
    NONLINEARITY, 2011, 24 (01) : 227 - 241
  • [42] Modeling the Jump-like Diffusion Motion of a Brownian Motor by a Game-Theory Approach: Deterministic and Stochastic Models
    Terets, A. D.
    Korochkova, T. Ye.
    Mashira, V. A.
    Rozenbaum, V. M.
    V. Shapochkina, I.
    Trakhtenberg, L. I.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2022, 25 (01): : 41 - 50