Using Data-Mining Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study

被引:180
作者
Schlechtingen, Meik [1 ]
Santos, Ilmar Ferreira [2 ]
Achiche, Sofiane [3 ]
机构
[1] EnBW Erneuerbare Energien GmbH, Dept Tech Operat Wind Offshore, D-20459 Hamburg, Germany
[2] Tech Univ Denmark, Dept Mech Engn, Sect Solid Mech, DK-2800 Lyngby, Denmark
[3] Ecole Polytech, Machines Design Sect, Dept Mech Engn, Montreal, PQ H3C 3A7, Canada
关键词
Condition monitoring; data mining; fuzzy neural networks; machine learning; neural networks; power generation; power system faults; signal analysis; wind energy; FUZZY-LOGIC; MODELS;
D O I
10.1109/TSTE.2013.2241797
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Four data-mining approaches for wind turbine power curve monitoring are compared. Power curve monitoring can be applied to evaluate the turbine power output and detect deviations, causing financial loss. In this research, cluster center fuzzy logic, neural network, and kappa-nearest neighbor models are built and their performance compared against literature. Recently developed adaptive neuro-fuzzy-interference system models are set up and their performance compared with the other models, using the same data. Literature models often neglect the influence of the ambient temperature and the wind direction. The ambient temperature can influence the power output up to 20%. Nearby obstacles can lower the power output for certain wind directions. The approaches proposed in literature and the ANFIS models are compared by using wind speed only and two additional inputs. The comparison is based on the mean absolute error, root mean squared error, mean absolute percentage error, and standard deviation using data coming from three pitch regulated turbines rating 2 MW each. The ability to highlight performance deviations is investigated by use of real measurements. The comparison shows the decrease of error rates and of the ANFIS models when taking into account the two additional inputs and the ability to detect faults earlier.
引用
收藏
页码:671 / 679
页数:9
相关论文
共 24 条
[1]  
[Anonymous], AERODYNAMICS WIND TU
[2]  
[Anonymous], ANN OPER RES
[3]  
[Anonymous], 2005, 61400121 IEC
[4]  
[Anonymous], 2001, Neural Networks: A Comprehensive Foundation
[5]  
[Anonymous], 1994, Journal of intelligent and Fuzzy systems
[6]  
[Anonymous], 2006, Pattern recognition and machine learning
[7]   Technical note: Using model trees for classification [J].
Frank, E ;
Wang, Y ;
Inglis, S ;
Holmes, G ;
Witten, IH .
MACHINE LEARNING, 1998, 32 (01) :63-76
[8]  
Frank E., 1999, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations
[9]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685
[10]   On-line monitoring of power curves [J].
Kusiak, Andrew ;
Zheng, Haiyang ;
Song, Zhe .
RENEWABLE ENERGY, 2009, 34 (06) :1487-1493