Brain MR Image Segmentation Based on Gaussian Filtering and Improved FCM Clustering Algorithm

被引:0
作者
Wan, Chunyuan [1 ]
Ye, Mingquan [1 ]
Yao, Chuanwen [1 ]
Wu, Changrong [2 ]
机构
[1] Wannan Med Coll, Sch Med Informat, Wuhu, Peoples R China
[2] Anhui Normal Univ, Sch Math & Comp Sci, Wuhu, Peoples R China
来源
2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI) | 2017年
基金
中国国家自然科学基金;
关键词
brain MR image; image segmentation; Gaussian filtering; fuzzy C-means clustering; gray histogram; C-MEANS ALGORITHM; AUTOMATIC SEGMENTATION; SPATIAL INFORMATION; LOCAL INFORMATION; FUZZY; INITIALIZATION; OPTIMIZATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Traditional fuzzy C-means (FCM) clustering method is not able to get the desired results of brain segmentation in the brain magnetic resonance (MR) image. In this paper, a new method of brain image segmentation based on Gaussian filtering and FCM clustering algorithm is proposed. The method adopted Gaussian filtering to remove noise and the initial cluster center was determined by the gray histograms to obtain. Using this method, 20 samples of brain MR images with 9% and 5% noise interference provided by Brain Web were segmented. The experimental results showed the proposed method was accuracy and efficiency.
引用
收藏
页数:5
相关论文
共 32 条
[1]   A study on fuzzy clustering for magnetic resonance brain image segmentation using soft computing approaches [J].
Agrawal, Sanjay ;
Panda, Rutuparna ;
Dora, Lingraj .
APPLIED SOFT COMPUTING, 2014, 24 :522-533
[2]   A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J].
Ahmed, MN ;
Yamany, SM ;
Mohamed, N ;
Farag, AA ;
Moriarty, T .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (03) :193-199
[3]  
[Anonymous], 2010, (IJCSE) International Journal on Computer Science and Engineering
[4]  
[Anonymous], 1994, Journal of intelligent and Fuzzy systems
[5]   Fuzzy C-mean based brain MRI segmentation algorithms [J].
Balafar, M. A. .
ARTIFICIAL INTELLIGENCE REVIEW, 2014, 41 (03) :441-449
[6]   Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction [J].
Benaichouche, A. N. ;
Oulhadj, H. ;
Siarry, P. .
DIGITAL SIGNAL PROCESSING, 2013, 23 (05) :1390-1400
[7]   Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation [J].
Cai, Weiling ;
Chen, Songean ;
Zhang, Daoqiang .
PATTERN RECOGNITION, 2007, 40 (03) :825-838
[8]   Comments on "A Robust Fuzzy Local Information C-Means Clustering Algorithm" [J].
Celik, Turgay ;
Lee, Hwee Kuan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (03) :1258-1261
[9]   A novel multiseed nonhierarchical data clustering technique [J].
Chaudhuri, D ;
Chaudhuri, BB .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1997, 27 (05) :871-877
[10]  
Chen Zhaoxue, 2013, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, V30, P1164