Existence of periodic solutions for differential equations with multiple delays under dichotomy condition

被引:1
作者
Ngiamsunthorn, Parinya Sa [1 ,2 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Dept Math, Fac Sci, Bangkok 10140, Thailand
[2] King Mongkuts Univ Technol Thonburi, Theoret & Computat Sci Ctr TaCS, Fac Sci, Bangkok 10140, Thailand
关键词
delay differential equations; integrable dichotomy; periodic solutions; Krasnoselskii's fixed point theorem; STABILITY; SYSTEMS;
D O I
10.1186/s13662-015-0598-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using Krasnoselskii's fixed point theorem and dichotomy theory, we prove the existence of periodic solutions for differential equations with multiple delays of the form x' (t) + cx' (t - tau) = A(t)x(t) + f(t, x(t - alpha(1)(t)), ... , x(t - alpha(m)(t))), where the parameter c << 1 is a small perturbation for a delayed forced term. Moreover, we discuss the convergence of these solutions to a solution of the unperturbed problem as c -> 0.
引用
收藏
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1993, WORLD SCI SERIES NON
[2]  
[Anonymous], 1995, Delay Equations. Functional, Complex, and Nonlinear Analysis
[3]  
[Anonymous], 1979, Lecture Notes in Mathematics
[4]   Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations [J].
Baroun, A. ;
Boulite, S. ;
Diagana, T. ;
Maniar, L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (01) :74-84
[5]   A fixed-point theorem of Krasnoselskii [J].
Burton, TA .
APPLIED MATHEMATICS LETTERS, 1998, 11 (01) :85-88
[6]  
Castillo S, 2015, ELECTRON J DIFFER EQ
[7]   Note on the existence of periodic solutions of a class of systems of differential-difference equations [J].
Diblik, Josef ;
Iricanin, Bratislav ;
Stevic, Stevo ;
Smarda, Zdenek .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 :922-928
[8]  
Driver R.D., 2012, Ordinary and Delay Differential Equations, V20
[9]  
Guo CJ, 2006, ARCH MATH-BRNO, V42, P1
[10]  
Hale JK, 1993, Applied mathematical sciences, V99