Cluster-state preparation and multipartite entanglement analyzer with fermions

被引:42
作者
Zhang, XL [1 ]
Feng, M
Gao, KL
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom, Wuhan 430071, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 01期
关键词
D O I
10.1103/PhysRevA.73.014301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum cluster states and entangled-state analyzers are essential to measurement-based quantum computing. We propose to generate a quantum cluster state and to make a multipartite entanglement analyzer by using noninteracting free electrons or conduction electrons in quantum dots, based on polarizing beam splitters, charge detectors, and single-spin rotations. Our schemes are deterministic without the need of qubit-qubit interaction.
引用
收藏
页数:4
相关论文
共 26 条
[11]   Quantum teleportation of an Einstein-Podolsy-Rosen pair using an entangled three-particle state [J].
Gorbachev, VN ;
Trubilko, AI .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 91 (05) :894-898
[12]   Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations [J].
Gottesman, D ;
Chuang, IL .
NATURE, 1999, 402 (6760) :390-393
[13]   Quantum computers can search rapidly by using almost any transformation [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1998, 80 (19) :4329-4332
[14]   Quantum computers can search arbitrarily large databases by a single query [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (23) :4709-4712
[15]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[16]   The fermionic Hanbury Brown and Twiss experiment [J].
Henny, M ;
Oberholzer, S ;
Strunk, C ;
Heinzel, T ;
Ensslin, K ;
Holland, M ;
Schönenberger, C .
SCIENCE, 1999, 284 (5412) :296-298
[17]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[18]  
KNILL E, QUANTPH0108033
[19]   Dense coding in entangled states [J].
Lee, HJ ;
Ahn, D ;
Hwang, SW .
PHYSICAL REVIEW A, 2002, 66 (02) :2
[20]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744