ON THE OPTIMAL CONTROL OF IMPULSIVE HYBRID SYSTEMS ON RIEMANNIAN MANIFOLDS

被引:25
作者
Taringoo, Farzin [1 ,2 ]
Caines, Peter E. [1 ,2 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
[2] McGill Univ, Ctr Intelligent Machines, Montreal, PQ H3A 0E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
hybrid minimum principle; Riemannian manifolds; MAXIMUM PRINCIPLE; OPTIMAL MULTIPROCESSES;
D O I
10.1137/120867810
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper provides a geometrical derivation of the hybrid minimum principle (HMP) for autonomous impulsive hybrid systems on Riemannian manifolds, i.e., systems where the manifold valued component of the hybrid state trajectory may have a jump discontinuity when the discrete component changes value. The analysis is expressed in terms of extremal trajectories on the cotangent bundle of the manifold state space. In the case of autonomous hybrid systems, switching manifolds are defined as smooth embedded submanifolds of the state manifold and the jump function is defined as a smooth map on the switching manifold. The HMP results are obtained in the case of time invariant switching manifolds and state jumps on Riemannian manifolds.
引用
收藏
页码:3127 / 3153
页数:27
相关论文
共 41 条
[1]  
Agrachev A., 2004, Control Theory From the Geometric Viewpoint
[2]  
Alvarez F., 2004, RES REPORT
[3]  
[Anonymous], 1963, MATH THEORY OPTIMAL
[4]  
[Anonymous], 1963, Differential Forms With Applications to the Physical Sciences
[5]  
[Anonymous], REAL COMPLEX ANAL
[6]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[7]  
Azhmyakov V, 2008, LECT NOTES COMPUT SC, V4981, P30
[8]   Geometric Approach to Pontryagin's Maximum Principle [J].
Barbero-Linan, M. ;
Munoz-Lecanda, M. C. .
ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (02) :429-485
[9]   Optimal control of switching systems [J].
Bengea, SC ;
DeCarlo, RA .
AUTOMATICA, 2005, 41 (01) :11-27
[10]  
Boltyanskii V.G., 1966, SIAM J CONTROL OPTIM, V4, P326, DOI DOI 10.1137/0304027