A Fast Nonlinear Model Predictive Control Strategy for Real-time Motion Control of Mechanical Systems

被引:0
作者
Chen, Yutao [1 ]
Cuccato, Davide [1 ]
Bruschetta, Mattia [1 ]
Beghi, Alessandro [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Via Gradenigo 6, I-35100 Padua, Italy
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM) | 2017年
关键词
MPC; IMPLEMENTATION; ALGORITHM; DESIGN; MHE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Widespread application of real-time, Nonlinear Model Predictive Control (NMPC) algorithms to systems of large scale or with fast dynamics is challenged by the high associated computational cost, in particular in presence of long prediction horizons. In this paper, a fast NMPC strategy to reduce the on-line computational cost is proposed. A Curvature-based Measure of Nonlinearity (CMoN) of the system is exploited to reduce the required number of sensitivity computations, which largely contribute to the overall computational cost. The proposed scheme is validated by a simulation study on the chain of masses motion control problem, a toy example that can be easily extended to an arbitrary dimension. Simulations have been run with long prediction horizons and large state dimensions. Results show that sensitivity computations are significantly reduced with respect to other sensitivity updating schemes, while preserving control performance.
引用
收藏
页码:1780 / 1785
页数:6
相关论文
共 26 条
[11]  
Diehl M, 2009, LECT NOTES CONTR INF, V384, P391, DOI 10.1007/978-3-642-01094-1_32
[12]   qpOASES: a parametric active-set algorithm for quadratic programming [J].
Ferreau, Hans Joachim ;
Kirches, Christian ;
Potschka, Andreas ;
Bock, Hans Georg ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2014, 6 (04) :327-363
[13]   Gap metric concept and implications for multilinear model-based controller design [J].
Galán, O ;
Romagnoli, JA ;
Palazoglu, A ;
Arkun, Y .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (10) :2189-2197
[14]  
Guay M., 1996, THESIS
[15]   Real-time MHE-based nonlinear MPC of a Pendubot system [J].
Gulan, M. ;
Salaj, M. ;
Abdollahpouri, M. ;
Rohal-Ilkiv, B. .
IFAC PAPERSONLINE, 2015, 48 (23) :422-427
[16]   Efficient direct multiple shooting for nonlinear model predictive control on long horizons [J].
Kirches, C. ;
Wirsching, L. ;
Bock, H. G. ;
Schloeder, J. P. .
JOURNAL OF PROCESS CONTROL, 2012, 22 (03) :540-550
[17]  
Lindscheid C., 2016, 2016 IEEE Conference on Control Applications (CCA), P1506, DOI 10.1109/CCA.2016.7588014
[18]  
Nocedal J, 2006, SPRINGER SER OPER RE, P1, DOI 10.1007/978-0-387-40065-5
[19]   Autogenerating microsecond solvers for nonlinear MPC: A tutorial using ACADO integrators [J].
Quirynen, R. ;
Vukov, M. ;
Zanon, M. ;
Diehl, M. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2015, 36 (05) :685-704
[20]  
Quirynen R, 2012, THESIS