Interfacing Superconducting Qubits With Cryogenic Logic: Readout

被引:24
作者
Howington, Caleb [1 ]
Opremcak, Alex [2 ]
McDermott, Robert [2 ]
Kirichenko, Alex [3 ]
Mukhanov, Oleg A. [3 ]
Plourde, Britton L. T. [1 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
[3] SeeQC Inc, Elmsford, NY 10523 USA
基金
美国国家科学基金会;
关键词
Superconducting devices; Josephson junctions; superconducting integrated circuits; CIRCUITS;
D O I
10.1109/TASC.2019.2908884
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As superconducting quantum processors increase in size and complexity, the scalability of standard techniques for qubit control and readout becomes a limiting factor. Replacing room temperature analog components with cryogenic digital components could allow for the realization of systems well beyond the current state-of-the-art qubit arrays with tens of qubits. The standard technique for performing a qubit measurement with heterodyne readout uses a quantum-limited cryogenic amplifier chain and requires bulky microwave components inside the refrigerator with multiple control lines and pump signals. Additionally, the result is only accessible in software at room temperature. An alternative method for measuring qubits involves mapping the qubit state onto the photon occupation in a microwave cavity, followed by subsequent photon detection using a Josephson photomultiplier (JPM). The JPM measures the qubit and stores the result in a classical circulating current. To make use of this result, we can leverage existing single flux quantum (SFQ) circuitry. An underdamped Josephson transmission line (JTL) can be coupled to the JPM and fluxons traveling along the JTL are accelerated or delayed, depending on the circulating current state of the JPM. This fluxon delay can then be converted to an SFQ logic signal resulting in a digital qubit readout with a proximal microfabricated device, paving the way for cryogenic digital feedback necessary for error-correcting codes.
引用
收藏
页数:5
相关论文
共 24 条
  • [1] Rapid ballistic readout for flux qubits
    Averin, DV
    Rabenstein, K
    Semenov, VK
    [J]. PHYSICAL REVIEW B, 2006, 73 (09)
  • [2] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [3] Microwave Photon Counter Based on Josephson Junctions
    Chen, Y. -F.
    Hover, D.
    Sendelbach, S.
    Maurer, L.
    Merkel, S. T.
    Pritchett, E. J.
    Wilhelm, F. K.
    McDermott, R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [4] Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout
    Cooper, KB
    Steffen, M
    McDermott, R
    Simmonds, RW
    Oh, S
    Hite, DA
    Pappas, DP
    Martinis, JM
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (18) : 180401 - 1
  • [5] Reading out the state of a flux qubit by Josephson transmission line solitons
    Fedorov, Arkady
    Shnirman, Alexander
    Schoen, Gerd
    [J]. PHYSICAL REVIEW B, 2007, 75 (22):
  • [6] Fedorov K. G., 2014, PHYS REV LETT, V112, P1
  • [7] High-fidelity qubit measurement with a microwave-photon counter
    Govia, Luke C. G.
    Pritchett, Emily J.
    Xu, Canran
    Plourde, B. L. T.
    Vavilov, Maxim G.
    Wilhelm, Frank K.
    McDermott, R.
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):
  • [8] Design of a ballistic fluxon qubit readout
    Herr, Anna
    Fedorov, Arkady
    Shnirman, Alexander
    Il'ichev, Evgeny
    Schon, Gerd
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2007, 20 (11) : S450 - S454
  • [9] Rapid single-flux-quantum circuits for low noise mK operation
    Intiso, Samuel
    Pekola, Jukka
    Savin, Alexander
    Devyatov, Ygor
    Kidiyarova-Shevchenko, Anna
    [J]. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (05) : S335 - S339
  • [10] Flux qubit interaction with rapid single-flux quantum logic circuits: Control and readout
    Klenov, N. V.
    Kuznetsov, A. V.
    Soloviev, I. I.
    Bakurskiy, S. V.
    Denisenko, M. V.
    Satanin, A. M.
    [J]. LOW TEMPERATURE PHYSICS, 2017, 43 (07) : 789 - 798