Construction of a Blow-Up Solution for the Complex Ginzburg-Landau Equation in a Critical Case

被引:17
作者
Nouaili, Nejla [1 ]
Zaag, Hatem [2 ]
机构
[1] PSL Res Univ, Univ Paris auphine 09, CEREMADE, UMR 7534, F-75016 Paris, France
[2] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS,UMR 7539, F-93430 Villetaneuse, France
关键词
SEMILINEAR HEAT-EQUATIONS; NO GRADIENT STRUCTURE; LIOUVILLE THEOREM; MULTI-BUMP; FLOW; CONVECTION; STABILITY; BEHAVIOR; SET;
D O I
10.1007/s00205-017-1211-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a solution for the Complex Ginzburg-Landau equation in a critical case which blows up in finite time T only at one blow-up point. We also give a sharp description of its profile. The proof relies on the reduction of the problem to a finite dimensional one, and the use of index theory to conclude. The interpretation of the parameters of the finite dimension problem in terms of the blow-up point and time allows us to prove the stability of the constructed solution.
引用
收藏
页码:995 / 1058
页数:64
相关论文
共 36 条
[1]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[2]   UNIVERSALITY IN BLOW-UP FOR NONLINEAR HEAT-EQUATIONS [J].
BRICMONT, J ;
KUPIAINEN, A .
NONLINEARITY, 1994, 7 (02) :539-575
[3]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[4]   Construction of a Multisoliton Blowup Solution to the Semilinear Wave Equation in One Space Dimension [J].
Cote, Raphael ;
Zaag, Hatem .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (10) :1541-1581
[5]  
Ebde M. A., 2011, S.eMA J., V55, P5
[6]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884
[7]   The Cauchy problem in local spaces for the complex Ginzburg-Landau equation .2. Contraction methods [J].
Ginibre, J ;
Velo, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (01) :45-79
[8]  
GINIBRE J., 1996, DIFFER EQU ASYMPTOT, V100, P138
[9]   NONLINEAR RESPONSE OF A MARGINALLY UNSTABLE PLANE PARALLEL FLOW TO A 2-DIMENSIONAL DISTURBANCE [J].
HOCKING, LM ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 326 (1566) :289-+
[10]   NONLINEAR INSTABILITY BURST IN PLANE PARALLEL FLOW [J].
HOCKING, LM ;
STEWARTSON, K ;
STUART, JT .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB22) :705-+