PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP)

被引:90
作者
Jiang, CW [1 ]
Ma, YC [1 ]
Wang, CM [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200030, Peoples R China
关键词
hydro-turbine governing system; PID controller; chaos mutation; evolutionary programming;
D O I
10.1016/j.enconman.2005.07.009
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper proposes an improved evolutionary programming (EP) method with deterministic mutation factor for on line PID parameters optimization of hydro-turbine governing systems. The mutation factors are usually generated with Gaussian or Cauchy random series in conventional evolutionary programming algorithms. Considering the difficulties of on line optimal parameters settings resulting from nonlinear time-variant hydro-turbine governing systems, this paper introduces deterministic chaos dynamics into the mutation operation of EP and provides a deterministic chaotic mutation evolutionary programming (DCMEP) method. The improved method develops the traditional concept that implements mutation operation with a fixed random distribution using a quasi-random deterministic way to generate the mutation factor. The test result of the two real hydro-turbine governing systems shows that the improved method can optimize the PID parameters efficiently, and the system has the characteristics of stability; low overshoot level and fast response. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1222 / 1230
页数:9
相关论文
共 16 条
[1]  
ASTROM KJ, 1984, AUTOMATICA, V20, P645, DOI 10.1016/0005-1098(84)90014-1
[2]   Chaotic sequences to improve the performance of evolutionary algorithms [J].
Caponetto, R ;
Fortuna, L ;
Fazzino, S ;
Xibilia, MG .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (03) :289-304
[3]  
CHELLAPILLA L, SPIE INTS OPT SCI EN, P260
[4]   Parameter control in evolutionary algorithms [J].
Eiben, AE ;
Hinterding, R ;
Michalewicz, Z .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) :124-141
[5]   New methodology for analytical and optimal design of fuzzy PID controllers [J].
Hu, B ;
Mann, GKI ;
Gosine, RG .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (05) :521-539
[6]   Improved evolutionary programming with dynamic mutation and metropolis criteria for multi-objective reactive power optimisation [J].
Jiang, C ;
Wang, C .
IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2005, 152 (02) :291-294
[7]  
JIANG C, 2003, POW C SPEC THEM BLAC, P28
[8]   Forecasting method study on chaotic load series with high embedded dimension [J].
Jiang, CW ;
Li, T .
ENERGY CONVERSION AND MANAGEMENT, 2005, 46 (05) :667-676
[9]  
LIESLEHTO J, 2001, P AM CONTR C ARL VA, P25
[10]  
ORELIND G, 1989, IEEE T ENERGY CONVER, V3, P300