EXISTENCE OF SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL NONLINEARITY

被引:0
作者
Zhang, Zhongyi [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130011, Jilin, Peoples R China
关键词
p-Laplacian equation; critical nonlinearity; magnetic fields; variational methods; SCHRODINGER-EQUATIONS; SEMICLASSICAL STATES; POSITIVE SOLUTIONS; CRITICAL SOBOLEV; BOUND-STATES; ELLIPTIC PROBLEMS; LIMIT;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the perturbed p-Laplacian equation problems with critical nonlinearity in R-N. By using the concentration compactness principle and variational method, we establish the existence and multiplicity of nontrivial solutions of the least energy.
引用
收藏
页数:14
相关论文
共 38 条
[1]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[2]  
[Anonymous], 1986, CBME REGIONAL C SERI
[3]  
[Anonymous], 1978, CONT DEV CONTINUUM M
[4]  
[Anonymous], 1996, Minimax Theorems, DOI DOI 10.1007/978
[5]   A semilinear Schrodinger equation in the presence of a magnetic field [J].
Arioli, G ;
Szulkin, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (04) :277-295
[6]  
Bartsch T, 2006, ADV DIFFERENTIAL EQU, V11, P781
[7]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[8]   SEQUENCES OF WEAK SOLUTIONS FOR NON-LOCAL ELLIPTIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITION [J].
Bisci, Giovanni Molica ;
Pizzimenti, Pasquale F. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (03) :779-809
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490