Automatic knee meniscus tear detection and orientation classification with Mask-RCNN

被引:98
作者
Couteaux, V [1 ,2 ]
Si-Mohamed, S. [3 ,4 ]
Nempont, O. [1 ]
Lefevre, T. [1 ]
Popoff, A. [1 ]
Pizaine, G. [1 ]
Villain, N. [1 ]
Bloch, I [2 ]
Cotten, A. [5 ]
Boussel, L. [3 ,4 ]
机构
[1] Philips Res France, 33 Rue Verdun, F-92150 Suresnes, France
[2] Univ Paris Saclay, Telecom ParisTech, LTCI, 46 Rue Barrault, F-75013 Paris, France
[3] Claude Bernard Lyon 1 Univ, CREATIS, CNRS UMR 5220, Inserm U1206,INSA Lyon, F-69100 Villeurbanne, France
[4] Hosp Civils Lyon, Dept Radiol, F-69002 Lyon, France
[5] CHRU Lille, Dept Musculoskeletal Radiol, F-59000 Lille, France
关键词
Knee meniscus; Artificial intelligence; Mask region-based convolutional neural network (R-CNN); Meniscal tear detection; Orientation classification;
D O I
10.1016/j.diii.2019.03.002
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: This work presents our contribution to a data challenge organized by the French Radiology Society during the Journees Francophones de Radiologie in October 2018. This challenge consisted in classifying MR images of the knee with respect to the presence of tears in the knee menisci, on meniscal tear location, and meniscal tear orientation. Materials and methods: We trained a mask region-based convolutional neural network (R-CNN) to explicitly localize normal and torn menisci, made it more robust with ensemble aggregation, and cascaded it into a shallow ConvNet to classify the orientation of the tear. Results: Our approach predicted accurately tears in the database provided for the challenge. This strategy yielded a weighted AUC score of 0.906 for all three tasks, ranking first in this challenge. Conclusion: The extension of the database or the use of 3D data could contribute to further improve the performances especially for non-typical cases of extensively damaged menisci or multiple tears. (C) 2019 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 17 条
  • [1] [Anonymous], P 3 INT C LEARNING R
  • [2] Boniatis Ioannis, 2008, 2008 IEEE International Workshop on Imaging Systems and Techniques, P335, DOI 10.1109/IST.2008.4659996
  • [3] Cullen Karen A, 2009, Natl Health Stat Report, P1
  • [4] Garcia-Garcia A, 2017, COMPUTER VISION PATT
  • [5] He K., 2016, CVPR, DOI [10.1109/CVPR.2016.90, DOI 10.1109/CVPR.2016.90]
  • [6] He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
  • [7] An automatic diagnosis method for the knee meniscus tears in MR images
    Koese, Cemal
    Gencalioglu, Okyay
    Sevik, Ugur
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (02) : 1208 - 1216
  • [8] KRIZHEVSKY A, 2012, ADV NEUR INF, V25
  • [9] Magnetic resonance imaging (MRI) of the knee: Identification of difficult-to-diagnose meniscal lesions
    Lecouvet, F.
    Van Haver, T.
    Acid, S.
    Perlepe, V.
    Kirchgesner, T.
    Vande Berg, B.
    Triqueneaux, P.
    Denis, M-L
    Thienpont, E.
    Malghem, J.
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2018, 99 (02) : 55 - 64
  • [10] Microsoft COCO: Common Objects in Context
    Lin, Tsung-Yi
    Maire, Michael
    Belongie, Serge
    Hays, James
    Perona, Pietro
    Ramanan, Deva
    Dollar, Piotr
    Zitnick, C. Lawrence
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 740 - 755