When does a Bernoulli convolution admit a spectrum?

被引:170
作者
Dai, Xin-Rong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
Spectrum; Spectral measure; Bernoulli convolution; DENSE ANALYTIC SUBSPACES; MOCK FOURIER-SERIES; FUGLEDES CONJECTURE; FRACTAL L-2-SPACES; CANTOR MEASURES; SET CONJECTURE; DOMAINS;
D O I
10.1016/j.aim.2012.06.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve a long-standing problem on Bernoulli convolutions. In particular, we show that the Bernoulli convolution mu(rho) with contraction rate rho is an element of (0, 1) admits a spectrum if and only if rho is the reciprocal of an even integer. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1681 / 1693
页数:13
相关论文
共 30 条
[1]  
[Anonymous], 1971, C THEOR NOMBR
[2]  
[Anonymous], 1944, Duke Math. J, DOI DOI 10.1215/S0012-7094-44-01111-7
[3]   Refinable functions with non-integer dilations [J].
Dai, Xin-Rong ;
Feng, De-Jun ;
Wang, Yang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) :1-20
[4]   Analysis of orthogonality and of orbits in affine iterated function systems [J].
Dutkay, Dorin Ervin ;
Jorgensen, Palle E. T. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (04) :801-823
[5]   On the spectra of a Cantor measure [J].
Dutkay, Dorin Ervin ;
Han, Deguang ;
Sun, Qiyu .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :251-276
[6]   On a family of symmetric Bernoulli convolutions [J].
Erdos, P .
AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 :974-976
[7]  
Fuglede B., 1974, Journal of Functional Analysis, V16, P101, DOI 10.1016/0022-1236(74)90072-X
[8]  
Garsia AM., 1962, T AM MATH SOC, V102, P409
[9]   Spectral property of the Bernoulli convolutions [J].
Hu, Tian-You ;
Lau, Ka-Sing .
ADVANCES IN MATHEMATICS, 2008, 219 (02) :554-567
[10]  
Iosevich A, 2003, MATH RES LETT, V10, P559