On the complexity of the isomorphism relation for finitely generated groups

被引:37
作者
Thomas, S [1 ]
Velickovic, B
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[2] Univ Paris 07, Equipe Log, URA 753, F-75251 Paris, France
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.1998.7825
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Confirming a conjecture of G. Hjorth and A. Kechris (1996, Ann. Pure Appl. Logic 82, 221-272) we prove that the isomorphism relation for finitely generated groups is a universal essentially countable Borel equivalence relation. We also prove the corresponding result for the conjugacy relation for subgroups of the free group F-2 On two generators. (C) 1999 Academic Press.
引用
收藏
页码:352 / 373
页数:22
相关论文
共 16 条
[1]  
BECKER H, 1997, LONDON MATH SOC LECT
[2]   THE STRUCTURE OF HYPERFINITE BOREL EQUIVALENCE-RELATIONS [J].
DOUGHERTY, R ;
JACKSON, S ;
KECHRIS, AS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 341 (01) :193-225
[3]   ERGODIC EQUIVALENCE RELATIONS, COHOMOLOGY, AND VONNEUMANN ALGEBRAS .1. [J].
FELDMAN, J ;
MOORE, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) :289-324
[4]   A BOREL REDUCIBILITY THEORY FOR CLASSES OF COUNTABLE STRUCTURES [J].
FRIEDMAN, H ;
STANLEY, L .
JOURNAL OF SYMBOLIC LOGIC, 1989, 54 (03) :894-914
[5]  
FUCHS L, 1967, ABELIAN GROUPS
[6]   Borel equivalence relations and classifications of countable models [J].
Hjorth, G ;
Kechris, AS .
ANNALS OF PURE AND APPLIED LOGIC, 1996, 82 (03) :221-272
[7]  
HJORTH G, 1998, NONCLASSIFIABILITY C
[8]  
JACKSON S, UNPUB COUNTABLE BORE
[9]   FREE PRODUCT OF 2 GROUPS WITH A MALNORMAL AMALGAMATED SUBGROUP [J].
KARRASS, A ;
SOLITAR, D .
CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (06) :933-&
[10]  
Kechris, 2012, CLASSICAL DESCRIPTIV, V156