Topological regulation of activation barriers on fractal substrates

被引:8
作者
Burioni, Raffaella [1 ,2 ]
Corberi, Federico [3 ,4 ,5 ]
Vezzani, Alessandro [6 ,7 ]
机构
[1] Univ Parma, Dipartimento Fis & Sci Terra, I-423100 Parma, Italy
[2] Univ Parma, Ist Nazl Fis Nucl, Grp Coll Parma, I-423100 Parma, Italy
[3] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Salerno, Italy
[4] Univ Salerno, Ist Nazl Fis Nucl, Grp Coll Salerno, I-84084 Salerno, Italy
[5] Univ Salerno, CNISM, Unita Salerno, I-84084 Salerno, Italy
[6] CNR Ist Nanosci, Ctr S3, I-41125 Modena, Italy
[7] Univ Parma, Dipartimento Fis Sci Terra, I-43100 Parma, Italy
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
ALGEBRAIC DOMAIN GROWTH; BINARY-MIXTURES; PERIODIC OSCILLATIONS; ORDERING DYNAMICS; PHASE-SEPARATION; KINETICS; FIELD; MAGNETS; MODEL;
D O I
10.1103/PhysRevE.87.032160
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the phase-ordering dynamics of a ferromagnetic system with a scalar order-parameter on fractal graphs. We propose a scaling approach, inspired by renormalization-group ideas, where a crossover between distinct dynamical behaviors is induced by the presence of a length lambda associated with the topological properties of the graph. The transition between the early and the asymptotic stages is observed when the typical size L(t) of the growing ordered domains reaches the crossover length lambda. We consider two classes of inhomogeneous substrates with different activated processes, where the effects of the free-energy barriers can be analytically controlled during the evolution. On finitely ramified graphs, the free-energy barriers encountered by domains walls grow logarithmically with L(t), whereas they increase as a power law on all other structures. This produces different asymptotic growth laws (power laws vs logarithmic) and a different dependence of the crossover length lambda on the model parameters. Our theoretical picture agrees very well with extensive numerical simulations. DOI: 10.1103/PhysRevE.87.032160
引用
收藏
页数:9
相关论文
共 56 条
[1]   Detailed characterization of log-periodic oscillations for an aperiodic Ising model [J].
Andrade, RFS .
PHYSICAL REVIEW E, 2000, 61 (06) :7196-7199
[2]  
[Anonymous], 2004, Critical Phenomena in Natural Sciences: Chaos, Fractals Selforganization and Disorder: Concepts and Tools
[3]   UNIVERSAL SCALING OF THE STRESS-FIELD AT THE VICINITY OF A WEDGE CRACK IN 2 DIMENSIONS AND OSCILLATORY SELF-SIMILAR CORRECTIONS TO SCALING [J].
BALL, RC ;
BLUMENFELD, R .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1784-1787
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]  
BOUCHAUD JP, 1997, SPIN GLASSES RANDOM
[6]   THEORY OF PHASE-ORDERING KINETICS [J].
BRAY, AJ .
ADVANCES IN PHYSICS, 1994, 43 (03) :357-459
[7]   UNIVERSALITY CLASS FOR DOMAIN GROWTH IN RANDOM MAGNETS [J].
BRAY, AJ ;
HUMAYUN, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :L1185-L1191
[8]   Transport and scaling in quenched two- and three-dimensional Levy quasicrystals [J].
Buonsante, P. ;
Burioni, R. ;
Vezzani, A. .
PHYSICAL REVIEW E, 2011, 84 (02)
[9]   Random walks on graphs: ideas, techniques and results [J].
Burioni, R ;
Cassi, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (08) :R45-R78
[10]   Aging dynamics and the topology of inhomogenous networks [J].
Burioni, R. ;
Cassi, D. ;
Corberi, F. ;
Vezzani, A. .
PHYSICAL REVIEW LETTERS, 2006, 96 (23)