MicroRNA-150 Protects Against Pressure Overload-Induced Cardiac Hypertrophy

被引:42
|
作者
Liu, Wanli [1 ,2 ]
Liu, Yu [1 ,2 ]
Zhang, Yan [1 ,2 ]
Zhu, Xueyong [1 ,2 ]
Zhang, Rui [1 ,2 ]
Guan, Lihua [1 ,2 ]
Tang, Qizhu [1 ,2 ]
Jiang, Hong [1 ,2 ]
Huang, Congxin [1 ,2 ]
Huang, He [1 ,2 ]
机构
[1] Wuhan Univ, Dept Cardiol, Renmin Hosp, Wuhan 430060, Peoples R China
[2] Wuhan Univ, Cardiovasc Res Inst, Wuhan 430060, Peoples R China
基金
中国国家自然科学基金;
关键词
MICRORNA; HYPERTROPHY; SIGNAL TRANSDUCTION; SRF; SERUM RESPONSE FACTOR; LEFT-VENTRICULAR HYPERTROPHY; GENE-EXPRESSION; HEART-FAILURE; MESSENGER-RNA; FIBROSIS; MIR-150; DIFFERENTIATION; CARDIOMYOPATHY; CARDIOMYOCYTES;
D O I
10.1002/jcb.25057
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiac hypertrophy is the response of the heart to a variety of hypertrophic stimuli; this condition progresses to heart failure and sudden death. MicroRNAs (miRs) are a family of small, non-coding RNAs that mediate posttranscriptional gene silencing. Recent studies have identified miRs as important regulators in cardiac hypertrophy. One specific miR, miR-150 has been reported to be downregulated in hypertrophic murine hearts. However, the role of miR-150 as a regulator of cardiac hypertrophy remains unclear. In the present study, we used gain-of-function and loss-of-function approaches to investigate the functional roles of miR-150 in cardiac hypertrophy induced by aortic banding. The extent of the cardiac hypertrophy was evaluated by echocardiography and by pathological and molecular analyses of heart samples. Our results revealed that transgenic mice that overexpress miR-150 in the heart were resistant to cardiac hypertrophy and fibrosis through down-regulation of serum response factor (SRF). Conversely, the loss of function of miR-150 by genetic knockdown or antagomiR approaches produced the opposite effects. These studies suggest that miR-150 plays an important role in the regulation of cardiac hypertrophy and SRF is involved in miR-150 mediated anti-hypertrophic effect. Thus, miR-150 may be a new therapeutic target for cardiac hypertrophy. J. Cell. Biochem. 116: 2166-2176, 2015. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:2166 / 2176
页数:11
相关论文
共 50 条
  • [1] Shensongyangxin protects against pressure overload-induced cardiac hypertrophy
    Shen, Di-Fei
    Wu, Qing-Qing
    Ni, Jian
    Deng, Wei
    Wei, Cong
    Jia, Zhen-Hua
    Zhou, Heng
    Zhou, Meng-Qiao
    Bian, Zhou-Yan
    Tang, Qi-Zhu
    MOLECULAR MEDICINE REPORTS, 2016, 13 (01) : 980 - 988
  • [2] Stachydrine Protects Against Pressure Overload-Induced Cardiac Hypertrophy by Suppressing Autophagy
    Cao, Tong-Tong
    Chen, Hui-Hua
    Dong, Zhiwei
    Xu, Yan-Wu
    Zhao, Pei
    Guo, Wei
    Wei, Hong-Chang
    Zhang, Chen
    Lu, Rong
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 42 (01) : 103 - 114
  • [3] Maslinic acid protects against pressure overload-induced cardiac hypertrophy in mice
    Liu, Yan-Ling
    Kong, Chun-Yan
    Song, Peng
    Zhou, Heng
    Zhao, Xing-Sheng
    Tang, Qi-Zhu
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2018, 138 (02) : 116 - 122
  • [4] Lycopene protects against pressure overload-induced cardiac hypertrophy by attenuating oxidative stress
    Zeng, Junyi
    Zhao, Jingjing
    Dong, Bin
    Cai, Xingming
    Jiang, Jingzhou
    Xue, Ruicong
    Yao, Fengjuan
    Dong, Yugang
    Liu, Chen
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2019, 66 : 70 - 78
  • [5] Signal transducer and transcriptional activation 1 protects against pressure overload-induced cardiac hypertrophy
    Zhen, Changlin
    Liu, Hongxia
    Gao, Li
    Tong, Yuanyuan
    He, Chaoyong
    FASEB JOURNAL, 2021, 35 (01):
  • [6] TMEM173 protects against pressure overload-induced cardiac hypertrophy by modulating autophagy
    Jin, Ya-Ge
    Zhou, Heng
    Fan, Di
    Che, Yan
    Wang, Zhao-Peng
    Wang, Sha-Sha
    Tang, Qi-Zhu
    JOURNAL OF CELLULAR PHYSIOLOGY, 2021, 236 (07) : 5176 - 5192
  • [7] Absence of microRNA-155 protects against pressure overload-induced cardiac inflammation and failure
    Schroen, Blanche
    Corsten, Maarten
    Janssen, Ben J.
    Creemers, Esther E.
    Pinto, Yigal M.
    Zacchigna, Serena
    Giacca, Mauro
    Vigorito, Elena
    Thum, Thomas
    Carmeliet, Peter
    Mayr, Manuel
    de Windt, Leon
    Lutgens, Esther
    de Winther, Menno
    Papageorgiou, Anna
    Heymans, Stephane
    FASEB JOURNAL, 2012, 26
  • [8] Activation of Cardiac Fibulin-4 Protects Against Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure
    van Deel, Elza
    van Vliet, Nicole
    van den Bosch, Thierry
    van Spreeuwel, Ariane
    Bax, Noortje
    Boontje, Nicky
    Sasaki, Takako
    Van der Velden, Jolanda
    Bouten, C.
    von der Thusen, Jan
    Danser, Jan H.
    Duncker, Dirk J.
    Van der Pluijm, Ingrid
    Essers, Jeroen
    CIRCULATION, 2022, 146
  • [9] Autophagy and pressure overload-induced cardiac hypertrophy
    Zeng, Yong
    Ren, Wei-Qiong
    Wen, Ai-Zhen
    Zhang, Wen
    Fan, Fu-Yuan
    Chen, Ou-Ying
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2022, 24 (12) : 1101 - 1108
  • [10] Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy
    Xiao, Yang
    Yang, Zheng
    Wu, Qing-Qing
    Jiang, Xiao-Han
    Yuan, Yuan
    Chang, Wei
    Bian, Zhou Yan
    Zhu, Jin Xiu
    Tang, Qi-Zhu
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2017, 118 (11) : 3899 - 3910