Regularity for Eigenfunctions of Schrodinger Operators

被引:14
作者
Ammann, Bernd [1 ]
Carvalho, Catarina [2 ]
Nistor, Victor [3 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Tecn Lisboa, Inst Super Tecn, Dept Math, P-1049001 Lisbon, Portugal
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Hamiltonian; Schrodinger operator; eigenvalues; bound states; regularity of eigenfunctions; blow-up of singularites; singular potentials; multi-electron atoms; DIFFERENTIAL-OPERATORS; ASYMPTOTIC-BEHAVIOR; SOBOLEV SPACES; MANIFOLDS; APPROXIMATION; EQUATION; SYSTEMS; DECAY;
D O I
10.1007/s11005-012-0551-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a regularity result in weighted Sobolev (or Babuka-Kondratiev) spaces for the eigenfunctions of certain Schrodinger-type operators. Our results apply, in particular, to a non-relativistic Schrodinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let be the weighted Sobolev space obtained by blowing up the set of singular points of the potential , , . If satisfies in distribution sense, then for all and all a a parts per thousand currency sign 0. Our result extends to the case when b (j) and c (ij) are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a < 3/2.
引用
收藏
页码:49 / 84
页数:36
相关论文
共 56 条
[1]  
Agmon Shmuel., 1982, Mathematical Notes, V29
[2]  
Ammann B., 2004, Int. J. Math. Math. Sci., V2004, P161, DOI 10.1155/S0161171204212108
[3]   Pseudo differential operators on manifolds with a Lie structure at infinity [J].
Ammann, Bernd ;
Lauter, Robert ;
Nistor, Victor .
ANNALS OF MATHEMATICS, 2007, 165 (03) :717-747
[4]   Weighted Sobolev spaces and regularity for polyhedral domains [J].
Ammann, Bernd ;
Nistor, Victor .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3650-3659
[5]  
Ammann B, 2006, DOC MATH, V11, P161
[6]  
[Anonymous], 1996, Applied Mathematical Sciences
[7]  
[Anonymous], 2010, GRADUATE STUDIES MAT
[8]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[9]   Improving the rate of convergence of high-order finite elements on polyhedra II: Mesh refinements and interpolation [J].
Bacuta, Constantin ;
Nistor, Victor ;
Zikatanov, Ludmil T. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (7-8) :775-824
[10]  
Bacuta C, 2010, DOC MATH, V15, P687