Weighted Hilbert spaces for the stationary exterior Stokes problem with Navier slip boundary conditions

被引:11
作者
Dhifaoui, Anis [1 ,2 ]
Meslameni, Mohamed [3 ,4 ]
Razafison, Ulrich [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS, UMR 6623, 16 Route Gray, F-25030 Besancon, France
[2] Sfax Univ, Fac Sci, Lab Stabil & Control Syst, Sfax, Tunisia
[3] AL Baha Univ, Coll Arts & Sci Al Mandaq, Al Bahah, Saudi Arabia
[4] Univ Sfax, Preparatory Inst Engn Studies Sfax, Sfax, Tunisia
关键词
Fluid mechanics; Stokes equations; Navier slip boundary conditions; Exterior domain; Weighted spaces; Korn's inequalities; INVERTED FINITE-ELEMENTS; L-P-THEORY; ELLIPTIC PROBLEMS; EQUATIONS; DECOMPOSITION; REGULARITY; UNIQUENESS; VORTICITY; EXISTENCE; SYSTEMS;
D O I
10.1016/j.jmaa.2018.12.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the three-dimensional exterior Stokes problem with the Navier slip boundary conditions, describing the flow of a viscous and incompressible fluid past an obstacle where it is assumed that the fluid may slip at the boundary. Because the flow domain is unbounded, we set the problem in weighted spaces in order to control the behavior at infinity of the solutions. This functional framework also allows to prescribe various behaviors at infinity of the solutions (growth or decay). Existence and uniqueness of solutions are shown in a Hilbert setting which gives the tools for a possible numerical analysis of the problem. Weighted Korn's inequalities are the key point in order to study the variational problem. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1846 / 1871
页数:26
相关论文
共 52 条
[1]  
ACHDOU Y, 1995, CR ACAD SCI I-MATH, V320, P541
[2]   Effective boundary conditions for laminar flows over periodic rough boundaries [J].
Achdou, Y ;
Pironneau, O ;
Valentin, F .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :187-218
[3]  
Achdou Y., 1998, Equations aux Derivees Partielles et Applications, P1
[4]   The Stokes problem in Rn:: An approach in weighted Sobolev spaces [J].
Alliot, F ;
Amrouche, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (05) :723-754
[5]  
Alliot F, 2000, MATH METHOD APPL SCI, V23, P575, DOI 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO
[6]  
2-4
[7]  
AMROUCHE C, 1994, J MATH PURE APPL, V73, P579
[8]  
AMROUCHE C, 1994, CZECH MATH J, V44, P109
[9]   Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces [J].
Amrouche, C ;
Girault, V ;
Giroire, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01) :55-81
[10]  
AMROUCHE C, 2013, ELECTRON J DIFFER EQ, V2013, P1