Numerical characterization of thermocline behaviour of combined sensible-latent heat storage tank using brick manganese rod structure impregnated with PCM capsules

被引:36
作者
Ahmed, N. [1 ]
Elfeky, K. E. [1 ]
Qaisrani, Mumtaz A. [1 ]
Wang, Q. W. [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE, Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal energy storage; Thermocline thickness; Phase change materials; Sensible-latent heat storage; THERMAL-ENERGY STORAGE; PACKED-BED; WASTE HEAT; TEMPERATURE; SYSTEMS; PERFORMANCE; COST; PART; ROCK;
D O I
10.1016/j.solener.2019.01.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Efficient medium temperature thermal energy storage (TES) can help to eliminate the imbalance between energy demand and supply. In this study the issue of thermal ratcheting in TES system is avoided by using structured sensible heat storage material. Another technical issue of temperature drops at the end of discharging cycles occurring in only sensible material filled TES is overcome to some extent by using phase change material (PCM) between sensible rod structure (SRS) providing stable fluid outlet temperature. A comprehensive transient numerical model is formulated by solving separate equations for heat transfer fluid and storage materials using energy balance method coupled with enthalpy technique to study the influence of phase change temperature in the PCM. The numerical model predicts thermal stratification behaviour and thermocline formation along the symmetry-axis. A detailed parametric analysis of the combined sensible-latent heat thermal energy storage is performed to investigate the effect of porosity variation, inlet velocity and feature size of sensible heat storage material on total energy utilization, effective discharging efficiency and effective discharging time using thermocline characterization. The results indicate that discharging efficiency of hybrid TES tank can be increased by using lower velocity of fluid at inlet, by decreasing porosity or by using reduced SRS feature size. The study offers suggestions for optimized design and governing parameters of a new type of combined sensible-latent heat TES configuration, while avoiding thermal ratcheting with stable fluid outlet temperature for an application specific process.
引用
收藏
页码:243 / 256
页数:14
相关论文
共 35 条
[1]   Pumped thermal energy storage and bottoming system part A: Concept and model [J].
Abarr, Miles ;
Geels, Brendan ;
Hertzberg, Jean ;
Montoya, Lupita D. .
ENERGY, 2017, 120 :320-331
[2]  
Ahmed N, 2018, 13 C P SDEWES2018
[3]   Thermal energy storage materials and systems for solar energy applications [J].
Alva, Guruprasad ;
Liu, Lingkun ;
Huang, Xiang ;
Fang, Guiyin .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :693-706
[4]   Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants [J].
Brosseau, D ;
Kelton, JW ;
Ray, D ;
Edgar, M ;
Chisman, K ;
Emms, B .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (01) :109-116
[5]  
Dincer I., 2002, Thermal energy storage: systems and applications
[6]   Numerical comparison between single PCM and multi-stage PCM based high temperature thermal energy storage for CSP tower plants [J].
Elfeky, K. E. ;
Ahmed, N. ;
Wang, Qiuwang .
APPLIED THERMAL ENGINEERING, 2018, 139 :609-622
[7]  
Felix RA, 2009, RENEW ENERG, V34, P1765, DOI DOI 10.1016/J.RENENE.2008.12.012
[8]   Review of Molten-Salt Thermocline Tank Modeling for Solar Thermal Energy Storage [J].
Flueckiger, Scott M. ;
Yang, Zhen ;
Garimella, Suresh V. .
HEAT TRANSFER ENGINEERING, 2013, 34 (10) :787-800
[9]   Thermomechanical Simulation of the Solar One Thermocline Storage Tank [J].
Flueckiger, Scott M. ;
Yang, Zhen ;
Garimella, Suresh V. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2012, 134 (04)
[10]   Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives [J].
Galione, P. A. ;
Perez-Segarra, C. D. ;
Rodriguez, I. ;
Oliva, A. ;
Rigola, J. .
APPLIED ENERGY, 2015, 142 :337-351