Existence of solutions for second-order differential inclusions involving proximal normal cones

被引:6
作者
Bernicot, Frederic [1 ]
Venel, Juliette [2 ]
机构
[1] Univ Lille 1, CNRS, Lab Math Paul Painleve, F-59655 Villeneuve Dascq, France
[2] Univ Valenciennes & Hainaut Cambresis Campus, LAMAV, F-59313 Valenciennes 9, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2012年 / 98卷 / 03期
关键词
NONCONVEX SWEEPING PROCESS; IMPACT PROBLEMS; UNILATERAL CONSTRAINTS; PENALTY APPROXIMATION; NONSMOOTH CONSTRAINTS; REFLECTING BOUNDARY; NUMERICAL SCHEME; HILBERT-SPACE; PERTURBATION; EQUATIONS;
D O I
10.1016/j.matpur.2012.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we prove global existence of solutions for second-order differential problems in a general framework. More precisely, we consider second-order differential inclusions involving proximal normal cone to a set-valued map. This set-valued map is supposed to take admissible values (so in particular uniformly prox-regular values, which may be non-smooth and non-convex). Moreover the solution is required to satisfy an impact law, appearing in the description of mechanical systems with inelastic shocks. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:257 / 294
页数:38
相关论文
共 42 条
[1]  
[Anonymous], 1998, Variational Analysis
[2]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[3]   The dynamics of discrete mechanical systems with perfect unilateral constraints [J].
Ballard, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (03) :199-274
[4]   Existence of solutions to the nonconvex sweeping process [J].
Benabdellah, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 164 (02) :286-295
[5]  
Bernicot F., 2010, Confluentes Math, V2, P445, DOI [10.1142/S1793744210000247, DOI 10.1142/S1793744210000247]
[6]   Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme [J].
Bernicot, Frederic ;
Venel, Juliette .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) :1195-1224
[7]  
Bernicot F, 2010, J CONVEX ANAL, V17, P451
[8]  
Bounkhel M, 2005, J NONLINEAR CONVEX A, V6, P359
[9]  
Brogliato B., 2007, OBSERVER DESIGN DISS
[10]  
Clarke F. H., 1998, NONSMOOTH ANAL CONTR, V178, DOI 10.1007/b97650