Intramolecular electron-induced proton transfer and its correlation with excited-state intramolecular proton transfer

被引:39
|
作者
Wang, Wei [1 ]
Marshall, Mary [2 ]
Collins, Evan [2 ]
Marquez, Sara [2 ]
Mu, Chaonan [1 ]
Bowen, Kit H. [2 ]
Zhang, Xinxing [1 ]
机构
[1] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[2] Johns Hopkins Univ, Dept Chem, Charles & 34Th St, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
TRANSFER ESIPT; ANIONIC COMPLEXES; ATTACHMENT; URACIL; PHOTOPHYSICS; PHOTOELECTRON; SPECTROSCOPY; THYMINE; ACID;
D O I
10.1038/s41467-019-09154-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electron-induced proton transfer depicts the proton motion coupled with the attachment of a low-energy electron to a molecule, which helps to understand copious fundamental chemical processes. Intramolecular electron-induced proton transfer is a similar process that occurs within a single molecule. To date, there is only one known intramolecular example, to the best of our knowledge. By studying the 10-hydroxybenzo[h]quinoline and 8-hydroxyquinoline molecules using anion photoelectron spectroscopy and density functional theory, and by theoretical screening of six other molecules, here we show the intramolecular electron-induced proton transfer capability of a long list of molecules that meanwhile have the excited-state intramolecular proton transfer property. Careful examination of the intrinsic electronic signatures of these molecules reveals that these two distinct processes should occur to the same category of molecules. Intramolecular electron-induced proton transfer could have potential applications such as molecular devices that are responsive to electrons or current.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Excited-State Intramolecular Proton Transfer of the Natural Product Quercetin
    Simkovitch, Ron
    Huppert, Dan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (32): : 10244 - 10251
  • [2] Excited-state Intramolecular Proton-transfer-induced Charge Transfer of Polyquinoline
    Park, Sun-Young
    Jeong, Hyeok
    Yu, Hyunung
    Park, Soo Young
    Jang, Du-Jeon
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2010, 86 (06) : 1197 - 1201
  • [3] Sterically Controlled Excited-State Intramolecular Proton Transfer Dynamics in Solution
    Choi, Jungkweon
    Ahn, Doo-Sik
    Gal, Sol-Yi
    Cho, Dae Won
    Yang, Cheolhee
    Wee, Kyung-Ryang
    Ihee, Hyotcherl
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (48): : 29116 - 29125
  • [4] A theoretical assignment on excited-state intramolecular proton transfer mechanism for quercetin
    Yang, Dapeng
    Yang, Guang
    Zhao, Jinfeng
    Zheng, Rui
    Wang, Yusheng
    Lv, Jian
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2017, 30 (11)
  • [5] Excited-State Intramolecular Proton Transfer: A Short Introductory Review
    Joshi, Hem C.
    Antonov, Liudmil
    MOLECULES, 2021, 26 (05):
  • [6] Correlation between Kinetics and Thermodynamics for Excited-State Intramolecular Proton Transfer Reactions
    Liu, Zong-Ying
    Wei, Yu-Chen
    Chou, Pi-Tai
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (30): : 6611 - 6620
  • [7] A research on excited-state intramolecular proton-transfer mechanism of a new chemosensor
    Yang, Dapeng
    Li, Peiying
    Zheng, Rui
    Wang, Yusheng
    Lv, Jian
    THEORETICAL CHEMISTRY ACCOUNTS, 2016, 135 (02) : 1 - 7
  • [8] Amino proton donors in excited-state intramolecular proton-transfer reactions
    Chen, Chi-Lin
    Chen, Yi-Ting
    Demchenko, Alexander P.
    Chou, Pi-Tai
    NATURE REVIEWS CHEMISTRY, 2018, 2 (07) : 131 - 143
  • [9] Oxazoline as acceptor moiety for excited-state intramolecular proton transfer
    Reis, Joel S.
    Fernandes, Arthur B.
    Freitas-Dorr, Barbara C.
    Bastos, Erick L.
    Stefani, Helio A.
    TETRAHEDRON, 2018, 74 (48) : 6866 - 6872
  • [10] The excited-state intramolecular proton transfer fluorescence of HBT derivative induced by solvent polarity
    Li, Xiaochuan
    Shan, Dandan
    Kim, Changkyeom
    Son, Young-A
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2016, 635 (01) : 158 - 166