Fe, N dual doped graphitic carbon derived from straw as efficient electrochemical catalysts for oxygen reduction reaction and Zn-air batteries

被引:18
|
作者
Li, Jianpeng [1 ]
Li, Xianfeng [1 ]
Chen, Hongyan [1 ]
Xiao, Dingshu [1 ,2 ]
Li, Jiajia [1 ]
Xu, Dekang [1 ]
机构
[1] Huizhou Univ, Sch Chem & Mat Engn, Huicheng Dist 516007, Huizhou, Peoples R China
[2] Huizhou Univ, Daya Bay Chem Engn Res Inst, Daya Buy 516081, Huizhou, Peoples R China
关键词
Fe; N codoping; Graphitic carbon; Oxygen reduction reaction; Zn-air battery; ACTIVE-SITES; TEMPLATE SYNTHESIS; COUNTER ELECTRODE; HOLLOW SPHERES; ELECTROCATALYSTS; GRAPHENE; PLATINUM; PERFORMANCE; CO; ACTIVATION;
D O I
10.1016/j.jelechem.2020.114133
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we present a facile and one-step way for synthesizing Fe, N dual doped highly porous graphitic biomass carbon (FeNC) by using K2FeO4 to fulfill the activated process and catalytic graphitization of straws. The FeNC demonstrates hierarchically porous structure with large surface area of 1034 m(2) g(-1), Fe, N dual doping with certain amount of Fe-N-x, and graphitic structure. With these favorable features, the electrocatalytic activity for oxygen reduction reaction (ORR) reveals that the FeNC exhibits positively onset potential with highly comparable limiting current densitywhen comparing with the sample using conventional KOH activated agent. In additional, the assembled Zn-air battery using FeNC as air-cathode catalyst delivers a maximal power density of 128.4 mW cm(-2). Considering the abundance of straws on the earth and the low-cost and green prepared process, the present FeNC materials are highly promising in application in ORR catalysts for Zn-air battery and other energy-related fields. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Cu/Fe dual atoms catalysts derived from Cu-MOF for Zn-air batteries
    Wang, Meimei
    Gao, Peng
    Li, Dongyan
    Wu, Xiuping
    Yang, Meng
    Li, Zhaoqiang
    Shen, Yuesong
    Hu, Xiaohui
    Liu, Youlin
    Chen, Zhongwei
    MATERIALS TODAY ENERGY, 2022, 28
  • [42] Co3Fe7/CoCx nanoparticles encapsulated in nitrogen-doped carbon nanotubes synergistically promote the oxygen reduction reaction in Zn-air batteries
    Xiao, Lang
    Yu, Wanqing
    Liu, Jing
    Luan, Shankui
    Pei, Wenyu
    Cui, Xuejing
    Jiang, Luhua
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 655 : 427 - 438
  • [43] Transformation of postsynthesized F-MOF to Fe/N/F-tridoped carbon nanotubes as oxygen reduction catalysts for high power density Zn-air batteries
    Yu, Ao
    Long, Wangtao
    Zhu, Longtao
    Zhao, Yinan
    Peng, Ping
    Li, Fang -Fang
    CHINESE CHEMICAL LETTERS, 2023, 34 (05)
  • [44] Hierarchical Core-Shell Co2N/CoP Embedded in N, P-doped Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts for Zn-air Batteries
    Yao, Chongchao
    Li, Jiaxin
    Zhang, Zhihao
    Gou, Chunli
    Zhang, Zhongshen
    Pan, Gang
    Zhang, Jing
    SMALL, 2022, 18 (20)
  • [45] Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries
    Li, Jiajie
    Zou, Shanbao
    Huang, Jinzhen
    Wu, Xiaoqian
    Lu, Yue
    Liu, Xundao
    Song, Bo
    Dong, Dehua
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)
  • [46] Biomass derived robust Fe4N active sites supported on porous carbons as oxygen reduction reaction catalysts for durable Zn-air batteries
    Lu, Xiangyu
    Yang, Peixia
    Xu, Hao
    Xiao, Lihui
    Liu, Lilai
    Li, Ruopeng
    Alekseeva, Elena
    Zhang, Jinqiu
    Levin, Oleg
    An, Maozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (07) : 3725 - 3734
  • [47] MOF-assisted synthesis of Ni, Co, Zn, and N multidoped porous carbon as highly efficient oxygen reduction electrocatalysts in Zn-air batteries
    Huang, K.
    Rong, C.
    Zhang, W.
    Yang, X.
    Fan, Y.
    Liu, L.
    Yang, Z.
    Chen, W.
    Yang, J.
    MATERIALS TODAY ENERGY, 2021, 19
  • [48] Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries
    Li, Tongfei
    Li, Meng
    Zhang, Mengru
    Li, Xin
    Liu, Kunhao
    Zhang, Mingyi
    Liu, Xien
    Sun, Dongmei
    Xu, Lin
    Zhang, Yiwei
    Tang, Yawen
    CARBON, 2019, 153 : 364 - 371
  • [49] Atomically dispersed Co anchored on S,N-riched carbon for efficient oxygen reduction and Zn-air battery
    Wang, Zhen
    Shang, Ningzhao
    Wang, Wenhui
    Gao, Shutao
    Zhang, Shuaihua
    Gao, Wei
    Cheng, Xiang
    Wang, Chun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 899
  • [50] Cobalt Nanoparticles Embedded in N-Doped Carbon Nanotubes on Reduced Graphene Oxide as Efficient Oxygen Catalysts for Zn-Air Batteries
    Peng, Xiaomin
    Wei, Licheng
    Liu, Yiyi
    Cen, Tianlun
    Ye, Zhifeng
    Zhu, Zhaogen
    Ni, Zhaotong
    Yuan, Dingsheng
    ENERGY & FUELS, 2020, 34 (07) : 8931 - 8938