Engineering Transition-Metal-Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO2 to Methane

被引:42
作者
Wannakao, Sippakorn [1 ,2 ,3 ]
Artrith, Nongnuch [1 ]
Limtrakul, Jumras [2 ,3 ,4 ]
Kolpak, Alexie M. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Kasetsart Univ, Dept Chem, Bangkok 10900, Thailand
[3] Kasetsart Univ, NANOTEC Ctr Nanoscale Mat Design Green Nanotechno, Bangkok 10900, Thailand
[4] Vidyasirimedhi Inst Sci & Technol, Dept Mat Sci & Engn, Rayong 21210, Thailand
关键词
carbides; density functional theory; electronic structure; reaction mechanisms; transition metals; DENSITY-FUNCTIONAL THEORY; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; ELECTROREDUCTION; CATALYSTS; CONVERSION; SURFACE; ENERGY; COPPER; HYDROGENATION;
D O I
10.1002/cssc.201500245
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design of catalysts for CO2 reduction is challenging because of the fundamental relationships between the binding energies of the reaction intermediates. Metal carbides have shown promise for transcending these relationships and enabling low-cost alternatives. Herein, we show that directional bonding arising from the mixed covalent/metallic character plays a critical role in governing the surface chemistry. This behavior can be described by consideration of individual d-band components. We use this model to predict efficient catalysts based on tungsten carbide with a sub-monolayer of iron adatoms. Our approach can be used to predict site-preference and binding-energy trends for complex catalyst surfaces.
引用
收藏
页码:2745 / 2751
页数:7
相关论文
共 56 条
  • [1] Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
    Abild-Pedersen, F.
    Greeley, J.
    Studt, F.
    Rossmeisl, J.
    Munter, T. R.
    Moses, P. G.
    Skulason, E.
    Bligaard, T.
    Norskov, J. K.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [2] Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters
    Allian, Ayman D.
    Takanabe, Kazuhiro
    Fujdala, Kyle L.
    Hao, Xianghon
    Truex, Timothy J.
    Cai, Juan
    Buda, Corneliu
    Neurock, Matthew
    Iglesia, Enrique
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) : 4498 - 4517
  • [3] Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2
    Aresta, Michele
    Dibenedetto, Angela
    Angelini, Antonella
    [J]. CHEMICAL REVIEWS, 2014, 114 (03) : 1709 - 1742
  • [4] Understanding the Composition and Activity of Electrocatalytic Nanoalloys in Aqueous Solvents: A Combination of DFT and Accurate Neural Network Potentials
    Artrith, Nongnuch
    Kolpak, Alexie M.
    [J]. NANO LETTERS, 2014, 14 (05) : 2670 - 2676
  • [5] Selective Heterogeneous CO2 Electroreduction to Methanol
    Back, Seoin
    Kim, Heejin
    Jung, Yousung
    [J]. ACS CATALYSIS, 2015, 5 (02): : 965 - 971
  • [6] Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface
    Bernstein, Nicole J.
    Akhade, Sneha A.
    Janik, Michael J.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (27) : 13708 - 13717
  • [7] Ab initio molecular simulations with numeric atom-centered orbitals
    Blum, Volker
    Gehrke, Ralf
    Hanke, Felix
    Havu, Paula
    Havu, Ville
    Ren, Xinguo
    Reuter, Karsten
    Scheffler, Matthias
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2175 - 2196
  • [8] Acid and basic catalysis
    Bronsted, JN
    [J]. CHEMICAL REVIEWS, 1928, 5 (03) : 231 - 338
  • [9] Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction
    Chan, Karen
    Tsai, Charlie
    Hansen, Heine A.
    Norskov, Jens K.
    [J]. CHEMCATCHEM, 2014, 6 (07) : 1899 - 1905
  • [10] Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
    Chen, Yihong
    Li, Christina W.
    Kanan, Matthew W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) : 19969 - 19972