ON HAMILTONIAN DECOMPOSITIONS OF TENSOR PRODUCTS OF GRAPHS

被引:0
作者
Paulraja, P. [1 ]
Kumar, S. Sampath [2 ]
机构
[1] Annamalai Univ, Dept Math, Annamalainagar 608002, Tamil Nadu, India
[2] SSN Coll Engn, Dept Math, Kalavakkam 603110, India
关键词
Hamiltonian Decomposition; Tensor Product; Cayley Graphs; CYCLE DECOMPOSITIONS;
D O I
10.2298/AADM170803003P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finding a hamiltonian decomposition of G is one of the challenging problems in graph theory. We do not know for what classes of graphs G and H, their tensor product G x H is hamiltonian decomposable. In this paper, we have proved that, if G is a hamiltonian decomposable circulant graph with certain properties and H is a hamiltonian decomposable multigraph, then G x H is hamiltonian decomposable. In particular, tensor products of certain sparse hamiltonian decomposable circulant graphs are hamiltonian decomposable.
引用
收藏
页码:178 / 202
页数:25
相关论文
共 18 条
[1]  
Alspach B., 1990, Cycles and Rays, P9, DOI [10.1007/978-94-009-0517-72, DOI 10.1007/978-94-009-0517-72]
[2]  
[Anonymous], 2007, Graph Theory
[3]   On Hamilton cycle decompositions of the tensor product of complete graphs [J].
Balakrishnan, R ;
Bermond, JC ;
Paulraja, P ;
Yu, ML .
DISCRETE MATHEMATICS, 2003, 268 (1-3) :49-58
[4]   Hamilton cycles in tensor product of graphs [J].
Balakrishnan, R ;
Paulraja, P .
DISCRETE MATHEMATICS, 1998, 186 (1-3) :1-13
[5]  
BALAKRISHNAN R, 2012, TXB GRAPH THEORY
[6]   HAMILTONIAN DECOMPOSITION OF LEXICOGRAPHIC PRODUCT [J].
BARANYAI, Z ;
SZASZ, GR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 31 (03) :253-261
[7]  
Bermond J.-C., 1978, Advances in graph theory, P21
[8]   HAMILTONIAN DECOMPOSITION OF CAYLEY-GRAPHS OF DEGREE-4 [J].
BERMOND, JC ;
FAVARON, O ;
MAHEO, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) :142-153
[9]  
Bosak J., 1990, DECOMPOSITIONS GRAPH
[10]   Edge exchanges in Hamiltonian decompositions of Kronecker-product graphs [J].
Jha, PK ;
Agnihotri, N ;
Kumar, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (02) :11-19