Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber

被引:83
作者
Hasan, M. I. [1 ]
Habib, M. Selim [2 ]
Habib, M. Samiul [2 ]
Razzak, S. M. Abdur [2 ]
机构
[1] Rajshahi Univ Engn & Technol, Dept Elect & Telecommun Engn, Rajshahi 6204, Bangladesh
[2] Rajshahi Univ Engn & Technol, Dept Elect & Elect Engn, Rajshahi 6204, Bangladesh
关键词
Dispersion compensation; Fiber nonlinearity; Fiber birefringence; Finite element method; CHROMATIC DISPERSION; DUAL-CORE; MICROSTRUCTURE FIBER; HOLEY FIBERS; DESIGN; OPTIMIZATION; PROPOSAL;
D O I
10.1016/j.yofte.2013.11.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an optimum design for highly birefringent hybrid photonic crystal fiber (HyPCF) based on a modified structure for broadband compensation covering the S, C, and L-communication bands i.e. wavelength ranging from 1460 to 1625 nm. The finite element method (FEM) with perfectly matched layer (PML) circular boundary is used to investigate the guiding property. It is demonstrated that it is possible to obtain broadband large negative dispersion, and dispersion coefficient varies from -388.72 to -723.1 ps nm (1) km (1) over S, C and L-bands with relative dispersion slope (RDS) matched to that of single mode fiber (SMF) of about 0.0036 nm (1) at 1550 nm. According to simulation, a five-ring dispersion compensating hybrid cladding photonic crystal fiber (DC-HyPCF) is designed that simultaneously offers birefringence of order 3.79 x 10(-2), nonlinear coefficient of 40.1 W (1) km (1) at 1550 nm wavelength. In addition to this, effective area, residual dispersion, and confinement loss of the proposed DC-HyPCF are also reported and discussed. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 43 条
[21]   A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement [J].
Lee, JH ;
Teh, PC ;
Yusoff, Z ;
Ibsen, M ;
Belardi, W ;
Monro, TM ;
Richardson, DJ .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (06) :876-878
[22]   Splice-free interfacing of photonic crystal fibers [J].
Leon-Saval, SG ;
Birks, TA ;
Joly, NY ;
George, AK ;
Wadsworth, WJ ;
Kakarantzas, G ;
Russell, PSJ .
OPTICS LETTERS, 2005, 30 (13) :1629-1631
[23]  
Lægsgaard J, 2004, MATER RES SOC SYMP P, V797, P169
[24]  
Li Q., 2009, S PHOT OPT 14 16 AUG
[25]   Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber [J].
Matsui, Takashi ;
Nakajima, Kazuhide ;
Sankawa, Izumi .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (03) :757-762
[26]   Modal cutoff and the V parameter in photonic crystal fibers [J].
Mortensen, NA ;
Folkenberg, JR ;
Nielsen, MD ;
Hansen, KP .
OPTICS LETTERS, 2003, 28 (20) :1879-1881
[27]   Dual-core photonic crystal fiber for dispersion compensation [J].
Ni, Y ;
Zhang, L ;
An, L ;
Peng, JD ;
Fan, CC .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (06) :1516-1518
[28]   Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers [J].
Poli, F ;
Cucinotta, A ;
Selleri, S ;
Bouk, AH .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (04) :1065-1067
[29]   Tailoring Dispersion and Confinement Losses of Photonic Crystal Fibers Using Hybrid Cladding [J].
Razzak, S. M. Abdur ;
Namihira, Yoshinori .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (13-16) :1909-1914
[30]   Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers [J].
Razzak, S. M. Abdur ;
Namihira, Yoshinori .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (1-4) :249-251